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Introduction 

The IMSL Fortran Libraries 
The IMSL Libraries consist of two separate, but coordinated Libraries that allow easy user access. 
These Libraries are organized as follows:  

� MATH/LIBRARY general applied mathematics and special functions  

 The User�s Guide for IMSL MATH/LIBRARY has two parts: 

1. MATH/LIBRARY (Volumes 1 and 2) 

2. MATH/LIBRARY Special Functions 

� STAT/LIBRARY statistics  

Most of the routines are available in both single and double precision versions. Many routines are 
also available for complex and complex-double precision arithmetic. The same user interface is 
found on the many hardware versions that span the range from personal computer to 
supercomputer. Note that some IMSL routines are not distributed for FORTRAN compiler 
environments that do not support double precision complex data. The specific names of the IMSL 
routines that return or accept the type double complex begin with the letter �Z� and, occasionally, 
�DC.� 

Getting Started 
IMSL MATH/LIBRARY Special Functions is a collection of FORTRAN subroutines and 
functions useful in research and statistical analysis. Each routine is designed and documented to be 
used in research activities as well as by technical specialists. 

To use any of these routines, you must write a program in FORTRAN (or possibly some other 
language) to call the MATH/LIBRARY Special Functions routine. Each routine conforms to 
established conventions in programming and documentation. We give first priority in development 
to efficient algorithms, clear documentation, and accurate results. The uniform design of the 
routines makes it easy to use more than one routine in a given application. Also, you will find that 
the design consistency enables you to apply your experience with one MATH/LIBRARY Special 
Functions routine to all other IMSL routines that you use. 
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Finding the Right Routine 
The organization of IMSL MATH/LIBRARY Special Functions closely parallels that of the 
National Bureau of Standards� Handbook of Mathematical Functions, edited by Abramowitz and 
Stegun (1964). Corresponding to the NBS Handbook, functions are arranged into separate 
chapters, such as elementary functions, trigonometric and hyperbolic functions, exponential 
integrals, gamma function and related functions, and Bessel functions. To locate the right routine 
for a given problem, you may use either the table of contents located in each chapter introduction, 
or one of the indexes at the end of this manual. GAMS index uses GAMS classification (Boisvert, 
R.F., S.E. Howe, D.K. Kahaner, and J.L. Springmann 1990, Guide to Available Mathematical 
Software, National Institute of Standards and Technology NISTIR 90-4237). Use the GAMS index 
to locate which MATH/LIBRARY Special Functions routines pertain to a particular topic or 
problem. 

Organization of the Documentation 
This manual contains a concise description of each routine, with at least one demonstrated exam-
ple of each routine, including sample input and results. You will find all information pertaining to 
the Special Functions Library in this manual. Moreover, all information pertaining to a particular 
routine is in one place within a chapter. 

Each chapter begins with an introduction followed by a table of contents that lists the routines 
included in the chapter. Documentation of the routines consists of the following information: 

� IMSL Routine�s Generic Name  

� Purpose: a statement of the purpose of the routine. If the routine is a function rather than a 
subroutine the purpose statement will reflect this fact. 

� Function Return Value: a description of the return value (for functions only). 

� Required Arguments: a description of the required arguments in the order of their 
occurrence. Input arguments usually occur first, followed by input/output arguments, with 
output arguments described last. Futhermore, the following terms apply to arguments: 

Input Argument must be initialized; it is not changed by the routine. 

Input/Output Argument must be initialized; the routine returns output through this 
argument; cannot be a constant or an expression. 

Input or Output Select appropriate option to define the argument as either input or output. 
See individual routines for further instructions. 

Output No initialization is necessary; cannot be a constant or an expression. The routine 
returns output through this argument. 

� Optional Arguments: a description of the optional arguments in the order of their 
occurrence. 

�     Fortran 90 Interface: a section that describes the generic and specific interfaces to the 
routine. 

�      Fortran 77 Style Interfaces: an optional section, which describes Fortran 77 style interfaces, 
is supplied for backwards compatibility with previous versions of the Library. 
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�      Example: at least one application of this routine showing input and required dimension and 
type statements. 

�      Output: results from the example. 

�      Comments: details pertaining to code usage. 

�      Description: a description of the algorithm and references to detailed information. In many 
cases, other IMSL routines with similar or complementary functions are noted. 

�      Programming notes: an optional section that contains programming details not covered 
elsewhere. 

�      References: periodicals and books with details of algorithm development. 

�      Additional Examples: an optional section with additional applications of this routine 
showing input and required dimension and type statements. 

Naming Conventions 
The names of the routines are mnemonic and unique. Most routines are available in both a single 
precision and a double precision version, with names of the two versions sharing a common root. 
The root name is also the generic interface  name. The name of the double precision specific 
version begins with a �D_.� The single precision specific version begins with an �S_�. For 
example, the following pairs are precision specific names of routines in the two different 
precisions: S_GAMDF/D_GAMDF (the root is �GAMDF ,� for �Gamma distribution function�) and 
S_POIDF/D_POIDF (the root is �POIDF,� for �Poisson distribution function�). The precision 
specific names of the IMSL routines that return or accept the type complex data begin with the 
letter �C_� or �Z_�  for complex or double complex, respectively. Of course the generic name can 
be used as an entry point for all precisions supported. 

When this convention is not followed the generic and specific interfaces are noted in the 
documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where 
standard names are already established, the standard names are used as the precision specific 
names. There may also be other interfaces supplied to the routine to provide for backwards 
compatibility with previous versions of the Library. These alternate interfaces are noted in the 
documentation when they are available.  

Except when expressly stated otherwise, the names of the variables in the argument lists follow 
the FORTRAN default type for integer and floating point. In other words, a variable whose name 
begins with one of the letters �I� through �N� is of type INTEGER, and otherwise is of type REAL 
or DOUBLE PRECISION, depending on the precision of the routine. 

An assumed-size array with more than one dimension that is used as a FORTRAN argument can 
have an assumed-size declarator for the last dimension only. In the MATH/LIBRARY Special 
Functions routines, the information about the first dimension is passed by a variable with the 
prefix �LD� and with the array name as the root. For example, the argument LDA contains the 
leading dimension of array A. In most cases, information about the dimensions of arrays is 
obtained from the array through the use of  Fortran 90�s size function.  Therefore, arguments 
carrying this type of information are usually defined as optional arguments. 

Where appropriate, the same variable name is used consistently throughout a chapter in the 
MATH/LIBRARY Special Functions. For example, in the routines for random number generation, 
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NR denotes the number of random numbers to be generated, and R or IR denotes the array that 
stores the numbers. 

When writing programs accessing the MATH/LIBRARY Special Functions , the user should 
choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or 
named common blocks. The careful user can avoid any conflicts with IMSL names if, in choosing 
names, the following rules are observed: 

� Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of 
the User�s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_. 

� Do not choose a name consisting of more than three characters with a numeral in the 
second or third position. 

For further details, see the section on �Reserved Names� in the Reference Material. 

Using Library Subprograms 
The documentation for the routines uses the generic name and omits the prefix, and hence the 
entire suite of routines for that subject is documented under the generic name. 

Examples that appear in the documentation also use the generic name. To further illustrate this 
principle, note the BSJNS documentation (see Chapter 6, Bessel Functions, of this manual). A 
description is provided for just one data type. There are four documented routines in this subject 
area: S_BSJNS, D_BSJNS, C_BSJNS, and Z_BSJNS. 

These routines constitute single-precision, double-precision, complex, and complex double-
precision versions of the code. 

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with 
the routines. The naming convention for modules joins the suffix �_int� to the generic routine 
name. Thus, the line �use BSJNS_INT� is inserted near the top of any routine that calls the 
subprogram �BSJNS�. More inclusive modules are also available. For example, the module named 
�imsl_libraries� contains the interface modules for all routines in the library.  

When dealing with a complex matrix, all references to the transpose of a matrix, AT , are replaced 
by the adjoint matrix 

A A AT H
� �

�  
where the overstrike denotes complex conjugation.  IMSL Fortran Library linear algebra software 
uses this convention to conserve the utility of generic documentation for that code subject. 
References to orthogonal matrices are replaced by their complex counterparts, unitary matrices. 
Thus, an n � n orthogonal matrix Q satisfies the condition Q Q IT

n� . An n � n unitary matrix V 
satisfies the analogous condition for complex matrices, V V In

*
� . 

Programming Conventions 
In general, the IMSL MATH/LIBRARY Special Functions codes are written so that computations 
are not affected by underflow, provided the system (hardware or software) places a zero value in 
the register. In this case, system error messages indicating underflow should be ignored. 
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IMSL codes also are written to avoid overflow. A program that produces system error messages 
indicating overflow should be examined for programming errors such as incorrect input data, 
mismatch of argument types, or improper dimensioning. 

In many cases, the documentation for a routine points out common pitfalls that can lead to failure 
of the algorithm. 

Library routines detect error conditions, classify them as to severity, and treat them accordingly. 
This error-handling capability provides automatic protection for the user without requiring the user 
to make any specific provisions for the treatment of error conditions. See the section on �User 
Errors� in the Reference Material for further details. 

Module Usage 
Users are required to incorporate a �use� statement near the top of their program for the IMSL 
routine being called when writing new code that uses this library. However, legacy code which 
calls routines in the previous version of the library without the presence of a �use� statement will 
continue to work as before.  The example programs throughout this manual demonstrate the 
syntax for including use statements in your program.  In addition to the examples programs, 
common cases of when and how to employ a use statement are described below. 

�� Users writing new programs calling the generic interface to IMSL routines must include a use 
statement near the top of any routine that calls the IMSL routines.  The naming convention for 
modules joins the suffix �_int� to the generic routine name.  For example, if a new program 
is written calling the IMSL routines LFTRG and LFSRG, then the following use statements 
should be inserted inserted near the top of the program 
USE LFTRG_INT 
USE LFSRG_INT 

In addition to providing interface modules for each routine individually, we also provide a 
module named  �imsl_libraries�, which contains the generic interfaces for all routines in 
the library.   For programs that call several different IMSL routines using generic interfaces, it 
can be simpler to insert the line 
USE IMSL_LIBRARIES 

rather than list use statements for every IMSL subroutine called. 

�� Users wishing to update existing programs to call other routines from this library should 
incorporate a use statement for the new routine being called. (Here, the term �new routine� 
implies any routine in the library, only �new� to the user�s program.)   For example, if a call 
to the generic interface for the routine LSARG is added to an existing program, then  
USE LSARG_INT 

should be inserted near the top of your program. 

�� Users wishing to update existing programs to call the new generic versions of the routines 
must change their calls to the existing routines to match the new calling sequences and use 
either the routine specific interface modules or the all encompassing �imsl_libraries� 
module.    
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�� Code which employed the �use numerical_libraries� statement from the previous 
version of the library will continue to work properly with this version of the library.     

Programming Tips 
It is strongly suggested that users force all program variables to be explicitly typed. This is done 
by including the line �IMPLICIT NONE� as close to the first line as possible. Study some of the 
examples accompanying an IMSL Fortran Library routine early on. These examples are available 
online as part of the product. 

Each subject routine called or otherwise referenced requires the �use� statement for an interface 
block designed for that subject routine. The contents of this interface block are the interfaces to the 
separate routines available for that subject. Packaged descriptive names for option numbers that 
modify documented optional data or internal parameters might also be provided in the interface 
block. Although this seems like an additional complication, many typographical errors are avoided 
at an early stage in development through the use of these interface blocks. The �use� statement is 
required for each routine called in the user�s program.  

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then 
the �use� statements are not required. 

Optional Subprogram Arguments 
IMSL Fortran Library routines have required arguments and may have optional arguments. All 
arguments are documented for each routine. For example, consider the routine GCIN that evaluates 
the inverse of a general continuous CDF. The required arguments are P, X, and F. The optional 
arguments are IOPT and M. Both IOPT and M take on default values so are not required as input by 
the user unless the user wishes for these arguments to take on some value other than the default. 
Often there are other output arguments that are listed as optional because although they may 
contain information that is closely connected with the computation they are not as compelling as 
the primary problem. In our example code, GCIN, if the user wishes to input the optional argument 
�IOPT� then the use of the keyword �IOPT=� in the argument list to assign an input value to IOPT 
would be necessary.  

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES 
interface module includes backwards compatible positional argument interfaces to all routines 
which existed in the Fortran 77 version of the Library. Note that it is not necessary to use �use� 
statements when calling these routines by themselves.  Existing programs which called these 
routines will continue to work in the same manner as before. 

Error Handling 
The routines in IMSL MATH/LIBRARY Special Functions attempt to detect and report errors and 
invalid input. Errors are classified and are assigned a code number. By default, errors of moderate 
or worse severity result in messages being automatically printed by the routine. Moreover, errors 
of worse severity cause program execution to stop. The severity level as well as the general nature 
of the error is designated by an �error type� with numbers from 0 to 5. An error type 0 is no error; 
types 1 through 5 are progressively more severe. In most cases, you need not be concerned with 
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our method of handling errors. For those interested, a complete description of the error-handling 
system is given in the Reference Material, which also describes how you can change the default 
actions and access the error code numbers. 

Printing Results 
None of the routines in IMSL MATH/LIBRARY Special Functions print results (but error 
messages may be printed). The output is returned in FORTRAN variables, and you can print these 
yourself.  

The IMSL routine UMACH (see the Reference Material section of this manual) retrieves the 
FORTRAN device unit number for printing. Because this routine obtains device unit numbers, it 
can be used to redirect the input or output. The section on �Machine-Dependent Constants� in the 
Reference Material contains a description of the routine UMACH.
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Chapter 1: Elementary Functions 

Routines 
Evaluates the argument of a complex number ......................CARG 1 
Evaluates the cube root of a real or complex number 3 x .... CBRT 2 
Evaluates (ex � 1)/x for real or complex x ........................... EXPRL 3 
Evaluates the complex base 10 logarithm, log�� z ............... LOG10 5 
Evaluates ln(x + 1) for real or complex x ...........................ALNREL 6 

Usage Notes 
The �relative� function EXPRL (page 3) is useful for accurately computing ex � 1 near x = 0. 
Computing ex � 1 using EXP(X) ��1 near x = 0 is subject to large cancellation errors.  

Similarly, ALNREL (page 5) can be used to accurately compute ln(x + 1) near x = 0. Using the 
routine ALOG to compute ln(x + 1) near x = 0 is subject to large cancellation errors in the 
computation of 1 + X. 

CARG 
This function evaluates the argument of a complex number. 

Function Return Value 
CARG � Function value.   (Output)  

If z = x + iy, then arctan(y/x) is returned except when both x and y are zero. In this case, 
zero is returned. 

Required Arguments 
Z � Complex number for which the argument is to be evaluated.   (Input) 

FORTRAN 90 Interface 
Generic: CARG (Z) 
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Specific:  The specific interface names are S_CARG and D_CARG. 

FORTRAN 77 Interface 
Single: CARG (Z) 

Double: The double precision function name is ZARG. 

Example 
In this example, Arg(1 + i) is computed and printed. 

      USE CARG_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE 
      COMPLEX    Z 
!                                 Compute 
      Z     = (1.0, 1.0) 
      VALUE = CARG(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CARG(�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
CARG( 1.000, 1.000) =  0.785 

Description 

Arg(z) is the angle � in the polar representation z = |z| ei �, where  

1i � �  

If z = x + iy, then � = tan��(y/x) except when both x and y are zero. In this case, � is defined to be 
zero. 

CBRT 
This funcion evaluates the cube root. 

Function Return Value 
CBRT � Function value.   (Output) 

Required Arguments 
X � Argument for which the cube root is desired.   (Input) 
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FORTRAN 90 Interface 
Generic: CBRT (X) 

Specific:  The specific interface names are S_CBRT, D_CBRT, C_CBRT, AND Z_CBRT. 

FORTRAN 77 Interface 
Single: CBRT (X) 

Double: The double precision name is DCBRT. 

Complex: The complex precision name is CCBRT. 

Double Complex: The Double complex precision name is ZCBRT. 

Example 
In this example, the cube root of 3.45 is computed and printed. 

      USE CBRT_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 3.45 
      VALUE = CBRT(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� CBRT(�, F6.3, �) = �, F6.3) 
      END 

Output 
CBRT( 3.450) =  1.511 

Comments 
For complex arguments, the branch cut for the cube root is taken along the negative real axis. 
The argument of the result, therefore, is greater than ��/3 and less than or equal to �/3. The 
other two roots are obtained by rotating the principal root by ��/3 and �/3. 

Description 
The function CBRT(X) evaluates x���. All arguments are legal.  For complex argument, x, the 
value of |x| must not overflow. 

Additional Example 
In this example, the cube root of �3 + 0.0076i is computed and printed. 
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      USE UMACH_INT 
      USE CBRT_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (-3.0, 0.0076) 
      VALUE = CBRT(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CBRT((�, F7.4, �,�, F7.4, �)) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 

Output 
CBRT((-3.0000, 0.0076)) = ( 0.722, 1.248) 

EXPRL 
This function evaluates the exponential function factored from first order, (EXP(X) � 1.0)/X. 

Function Return Value 
EXPRL � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: EXPRL (X) 

Specific:  The specific interface names are S_EXPRL, D_EXPRL, and C_EXPRL. 

FORTRAN 77 Interface 
Single: EXPRL (X) 

Double: The double precision function name is DEXPRL. 

Complex: The complex name is CEXPRL. 

Example 
In this example, EXPRL(0.184) is computed and printed. 

      USE EXPRL_INT 
      USE UMACH_INT 
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!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.184 
      VALUE = EXPRL(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� EXPRL(�, F6.3, �) = �, F6.3) 
      END 

Output 
EXPRL( 0.184) =  1.098 

Description 

The function EXPRL(X) evaluates (ex � 1)/x. It will overflow if ex overflows.  For complex 
arguments, z, the argument z must not be so close to a multiple of 2�i that substantial 
significance is lost due to cancellation. Also, the result must not overflow and |�z| must not be 
so large that the trigonometric functions are inaccurate. 

Additional Example 
In this example, EXPRL(0.0076i) is computed and printed. 

      USE EXPRL_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.0, 0.0076) 
      VALUE = EXPRL(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� EXPRL((�, F7.4, �,�, F7.4, �)) = (�, & 
          F6.3, �,� F6.3, �)�) 
      END 

Output 
EXPRL(( 0.0000, 0.0076)) = ( 1.000, 0.004) 

LOG10 
This function extends FORTRAN�s generic log10 function to evauate the principal value of the 
complex common logarithm. 

Function Return Value 
LOG10 � Complex function value.   (Output) 
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Required Arguments 
Z � Complex argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: LOG10 (Z) 

Specific:  The specific interface names are CLOG10 and ZLOG10. 

FORTRAN 77 Interface 
Complex: CLOG10 (Z) 

Double complex: The double complex function name is ZLOG10. 

Example 
In this example, the log��(0.0076i) is computed and printed. 

      USE LOG10_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.0, 0.0076) 
      VALUE = LOG10(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� LOG10((�, F7.4, �,�, F7.4, �)) = (�, & 
              F6.3, �,�, F6.3, �)�) 
      END 

Output 
LOG10(( 0.0000, 0.0076)) = (-2.119, 0.682) 

Description 
The function LOG10(Z) evaluates log��(z) . The argument must not be zero, and |z| must not 
overflow. 

ALNREL 
This function evaluates the natural logarithm of one plus the argument, or, in the case of complex 
argument, the principal value of the complex natural logarithm of one plus the argument. 
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Function Return Value 
ALNREL � Function value.   (Output) 

Required Arguments 
X � Argument for the function.   (Input) 

FORTRAN 90 Interface 
Generic: ALNREL (X) 

Specific:  The specific interface names are S_ALNREL, D_ALNREL, and C_ALNREL. 

FORTRAN 77 Interface 
Single: ALNREL (X) 

Double: The double precision name function is DLNREL. 

Complex: The comlpex name is CLNREL. 

Example 
In this example, ln(1.189) = ALNREL(0.189) is computed and printed. 

      USE ALNREL_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.189 
      VALUE = ALNREL(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ALNREL(�, F6.3, �) = �, F6.3) 
      END 

Output 
ALNREL( 0.189) =  0.173 

Comments 
1. Informational error  

Type  Code  

   3    2 Result of ALNREL(X) is accurate to less than one-half precision 
because X is too near �1.0. 
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2. ALNREL evaluates the natural logarithm of (1 + X) accurate in the sense of  relative 
error even when X is very small. This routine (as opposed to the intrinsic ALOG) should 
be used to maintain relative accuracy whenever X is small and accurately known. 

Description 
For real arguments, the function ALNREL(X) evaluates ln(1 + x) for x > �1. The argument x must 
be greater than �1.0 to avoid evaluating the logarithm of zero or a negative number. In addition, 
x must not be so close to �1.0 that considerable significance is lost in evaluating 1 + x. 

For complex arguments, the function CLNREL(Z) evaluates ln(1 + z). The argument z must not 
be so close to �1 that considerable significance is lost in evaluating 1 + z. If it is, a recoverable 
error is issued; however, z = �1 is a fatal error because ln(1 + z) is infinite. Finally, |z| must not 
overflow.  

Let 	 = |z|, z = x + iy and r� = |1 + z|� = (1 + x)� + y� = 1 + 2x + 	�. Now, if 	 is small, we may 
evaluate CLNREL(Z) accurately by 

  log(1 + z)   =   log r + iArg(z + 1) 

      =  1/2 log r� + iArg(z + 1) 

      =  1/2 ALNREL(2x + 	�) + iCARG(1 + z) 

Additional Example 
In this example, ln(0.0076i) = ALNREL(�1 + 0.0076i) is computed and printed. 

      USE UMACH_INT 
      USE ALNREL_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (-1.0, 0.0076) 
      VALUE = ALNREL(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ALNREL((�, F8.4, �,�, F8.4, �)) = (�, & 
          F8.4, �,�, F8.4, �)�) 
      END 

Output 
ALNREL((-1.000, .0076)) = (-4.880, 1.571) 
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Chapter 2: Trigonometric and 
Hyperbolic Functions 

Routines 
2.1 Trigonometric Functions 

Evaluates tan z for complex z...................................................TAN 10 
Evaluates cot x for real x ......................................................... COT 11 
Evaluates sin x for x a real angle in degrees........................SINDG 13 
Evaluates cos x for x a real angle in degrees.....................COSDG 14 
Evaluates sin�� z for complex z................................................ASIN 16 
Evaluates cos�� z for complex z.............................................ACOS 17 
Evaluates tan�� z for complex z ............................................. ATAN 18 
Evaluates tan��(x/y) for x and y complex ............................. ATAN2 19 

2.2 Hyperbolic Functions 
Evaluates sinh z for complex z ............................................... SINH 20 
Evaluates cosh z for complex z .............................................COSH 21 
Evaluates tanh z for complex z.............................................. TANH 23 

2.3 Inverse Hyperbolic Functions 
Evaluates sinh�� x for real or complex x ...............................ASINH 24 
Evaluates cosh�� x for real or complex x ............................ ACOSH 25 
Evaluates tanh�� x for real or complex x ..............................ATANH 27 

Usage Notes 
The complex inverse trigonometric hyperbolic functions are single-valued and regular in a slit 
complex plane. The branch cuts are shown below for z = x + iy, i.e., x = 
z and y = �z are the real 
and imaginary parts of z, respectively. 
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Branch Cuts for Inverse Trigonometric and Hyperbolic Functions 

TAN 
This function extends FORTRAN�s generic tan to evaluate the complex tangent. 

Function Return Value 
TAN � Complex function value.   (Output) 

Required Arguments 
Z � Complex number representing the angle in radians for which the tangent is desired.   

(Input) 

FORTRAN 90 Interface 
Generic: TAN(Z) 

Specific:  The specific interface names are CTAN and ZTAN. 

FORTRAN 77 Interface 
Complex : CTAN(Z) 

Double complex: The double complex function name is ZTAN. 

Example 
In this example, tan(1 + i) is computed and printed. 

      USE TAN_INT 
      USE UMACH_INT 
!                                 Declare variables 
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      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.0, 1.0) 
      VALUE = TAN(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� TAN((�, F6.3, �,�, F6.3, �)) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 

Output 
TAN(( 1.000, 1.000)) = ( 0.272, 1.084) 

Comments 
Informational error 
Type  Code 

   3    2 Result of CTAN(Z) is accurate to less than one-half precision because the 
   real part of Z is too near �/2 or 3�/2 when the imaginary part of Z is near 
   zero or because the absolute value of the real part is very large and the  
   absolute value of the imaginary part is small. 

Description 
Let z = x + iy. If |cos z|� is very small, that is, if x is very close to �/2 or 3�/2 and if y is small, 
then tan z is nearly singular and a fatal error condition is reported. If |cos z|� is somewhat larger 
but still small, then the result will be less accurate than half precision. When 2x is so large that 
sin 2x cannot be evaluated to any nonzero precision, the following situation results. If |y| < 3/2, 
then CTAN cannot be evaluated accurately to better than one significant figure. If 3/2 � |y| < �1/2 
ln �/2, then CTAN can be evaluated by ignoring the real part of the argument; however, the 
answer will be less accurate than half precision. Here, � = AMACH(4) is the machine precision. 

COT 
This function evaluates the cotangent. 

Function Value Return 
COT � Function value.   (Output) 

Required Arguments 
X � Angle in radians for which the cotangent is desired.   (Input) 

FORTRAN 90 Interface 
Generic: COT (X) 
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Specific:  The specific interface names are COT, DCOT, CCOT, and ZCOT. 

FORTRAN 77 Interface 
Single: COT (X) 

Double: The double precision function name is DCOT. 

Complex: The complex name is CCOT. 

Double Complex:   The double complex name is ZCOT. 

Example 
In this example, cot(0.3) is computed and printed. 

      USE COT_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.3 
      VALUE = COT(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� COT(�, F6.3, �) = �, F6.3) 
      END 

Output 
COT( 0.300) = 3.233 

Comments 
1. Informational error for Real arguments: 

Type     Code 

   3  2 Result of COT(X) is accurate to less than one-half precision because 
ABS(X) is too large, or X is nearly a multiple of �. 

 Informational error for complex arguments 
Type    Code 

              3        2 Result of CCOT(Z) is accurate to less than one-half precision because 
the real part of Z is too near a multiple of � when the imaginary part 
of Z is zero, or because the absolute value of the real part is very 
large and the absolute value of the imaginary part is small 

2. Referencing COT(X) is NOT the same as computing 1.0/TAN(X) because the error 
conditions are quite different. For example, when X is near �/2, TAN(X) cannot be 
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evaluated accurately and an error message must be issued. However, COT(X) can be 
evaluated accurately in the sense of absolute error. 

Description 
For real x, the magnitude of x must not be so large that most of the computer word contains the 
integer part of x. Likewise, x must not be too near an integer multiple of �, although x close to 
the origin causes no accuracy loss. Finally, x must not be so close to the origin that COT(X)  1/x 
overflows. 

For complex arguments, let z = x + iy. If |sin z|� is very small, that is, if x is very close to a 
multiple of � and if |y| is small, then cot z is nearly singular and a fatal error condition is 
reported. If |sin z|� is somewhat larger but still small, then the result will be less accurate than 
half precision. When |2x| is so large that sin 2x cannot be evaluated accurately to even zero 
precision, the following situation results. If |y| < 3/2, then CCOT cannot be evaluated accurately 
to be better than one significant figure. If 3/2 � |y| < �1/2 ln �/2, where � = AMACH(4) is the 
machine precision, then CCOT can be evaluated by ignoring the real part of the argument; 
however, the answer will be less accurate than half precision. Finally, |z| must not be so small 
that cot z  1/z overflows. 

Additional Example 
In this example, cot(1 + i) is computed and printed. 

      USE COT_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.0, 1.0) 
      VALUE = COT(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� COT((�, F6.3, �,�, F6.3, �)) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 

Output 
COT(( 1.000, 1.000)) = ( 0.218,-0.868) 

SINDG 
This function evaluates the sine for the argument in degrees. 

Function Return Value 
SINDG � Function value.   (Output) 
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Required Arguments 
X � Argument in degrees for which the sine is desired.   (Input) 

FORTRAN 90 Interface 
Generic: SINDG (X) 

Specific:  The specific interface names are S_SINDG and D_SINDG. 

FORTRAN 77 Interface 
Single: SINDG (X) 

Double: The double precision function name is DSINDG. 

Example 
In this example, sin 45� is computed and printed. 

      USE SINDG_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 45.0 
      VALUE = SINDG(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� SIN(�, F6.3, � deg) = �, F6.3) 
      END 

Output 
SIN(45.000 deg) = 0.707 

Description 
To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part 
fills more than the computer word. Under no circumstances is the magnitude of x allowed to be 
larger than the largest representable integer because complete loss of accuracy occurs in this 
case. 

COSDG 
This function evaluates the cosine for the argument in degrees. 
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Function Return Value 
COSDG � Function value.   (Output) 

Required Arguments 
X � Argument in degrees for which the cosine is desired.   (Input) 

FORTRAN 90 Interface 
Generic: COSDG (X) 

Specific:  The specific interface names are S_COSDG and D_COSDG. 

FORTRAN 77 Interface 
Single: COSDG (X) 

Double: The double precision function name is DCOSDG. 

Example 
In this example, cos 100� computed and printed. 

      USE COSDG_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 100.0 
      VALUE = COSDG(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� COS(�, F6.2, � deg) = �, F6.3) 
      END 

Output 
COS(100.00 deg) = -0.174 

Description 
To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part 
fills more than the computer word. Under no circumstances is the magnitude of x allowed to be 
larger than the largest representable integer because complete loss of accuracy occurs in this 
case. 
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ASIN 
This function extends FORTRAN�s generic ASIN function to evaluate the complex arc sine. 

Function Return Value 
ASIN � Complex function value in units of radians and the real part in the first or fourth 

quadrant.   (Output) 

Required Arguments 
ZINP � Complex argument for which the arc sine is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ASIN(ZINP) 

Specific:  The specific interface names are CASIN and ZASIN. 

FORTRAN 77 Interface 
Complex: CASIN(ZINP) 

Double complex: The double complex function name is ZASIN. 

Example 
In this example, sin��(1 � i) is computed and printed. 

      USE ASIN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.0, -1.0) 
      VALUE = ASIN(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ASIN((�, F6.3, �,�, F6.3, �)) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 

Output 
ASIN(( 1.000,-1.000)) = ( 0.666,-1.061) 
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Description 
Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH(2) 
is the largest floating point number. This error is not detected by ASIN.  

See Pennisi (1963, page 126) for reference. 

ACOS 
This function extends FORTRAN�s generic ACOS function evaluate the complex arc cosine. 

Function Return Value 
ACOS � Complex function value in units of radians with the real part in the first or second 

quadrant.   (Output) 

Required Arguments 
Z � Complex argument for which the arc cosine is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ACOS (Z) 

Specific:  The specific interface names are CACOS and ZACOS. 

FORTRAN 77 Interface 
Complex: CACOS (Z) 

Double complex: The double complex function name is ZACOS. 

Example 
In this example, cos��(1 � i) is computed and printed. 

      USE ACOS_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.0, -1.0) 
      VALUE = ACOS(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ACOS((�, F6.3, �,�, F6.3, �)) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 
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Output 
ACOS(( 1.000,-1.000)) = ( 0.905, 1.061) 

Description 
Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH(2) 
is the largest floating point number. This error is not detected by ACOS. 

ATAN 
This function extends FORTRAN�s generic function ATAN to evaluate the complex arc tangent. 

Function Return Value 
ATAN � Complex function value in units of radians with the real part in the first or fourth 

quadrant.   (Output) 

Required Arguments 
Z � Complex argument for which the arc tangent is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ATAN (Z) 

Specific:  The specific interface names are CATAN and ZATAN. 

FORTRAN 77 Interface 
Complex: CATAN (Z) 

Double complex: The double complex function name is ZATAN. 

Example 
In this example, tan��(0.01 � 0.01i) is computed and printed. 

      USE ATAN_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.01, 0.01) 
      VALUE = ATAN(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
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99999 FORMAT (� ATAN((�, F6.3, �,�, F6.3, �)) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 

Output 
ATAN(( 0.010, 0.010)) = ( 0.010, 0.010) 

Comments 
Informational error  

Type Code 

            3    2     Result of ATAN(Z) is accurate to less than one-half precision  
   because |Z�| is too close to �1.0. 

Description 
The argument z must not be exactly � i, because tan�� z is undefined there. In addition, z must 
not be so close to � i that substantial significance is lost. 

ATAN2 
This function extends FORTRAN�s generic function ATAN2 to evaluate the complex arc tangent of 
a ratio. 

Function Return Value 
ATAN2 � Complex function value in units of radians with the real part between �� and �.   

(Output) 

Required Arguments 
CSN � Complex numerator of the ratio for which the arc tangent is desired.   (Input) 

CCS � Complex denominator of the ratio.   (Input) 

FORTRAN 90 Interface 
Generic: ATAN2(CSN, CCS) 

Specific:  The specific interface names are CATAN2 and ZATAN2. 

FORTRAN 77 Interface 
Complex: CATAN2(CSN, CCS) 

Double complex: The double complex function name is ZATAN2. 
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Example 
In this example,  

� � � �1 1/ 2 / 2
tan

2
i

i
�

�

�

 

is computed and printed. 
      USE ATAN2_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, X, Y 
!                                 Compute 
      X     = (2.0, 1.0) 
      Y     = (0.5, 0.5) 
      VALUE = ATAN2(Y, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Y, X, VALUE 
99999 FORMAT (� ATAN2((�, F6.3, �,�, F6.3, �), (�, F6.3, �,�, F6.3,& 
          �)) = (�, F6.3, �,�, F6.3, �)�) 
      END 

Output 
ATAN2(( 0.500, 0.500), ( 2.000, 1.000)) = ( 0.294, 0.092) 

Comments 
The result is returned in the correct quadrant (modulo 2�). 

Description 
Let z� = CSN and z� = CCS. The ratio z = z�/z� must not be � i because tan��(� i) is undefined. 
Likewise, z� and z� should not both be zero. Finally, z must not be so close to �i that substantial 
accuracy loss occurs. 

SINH 
This function extends FORTRAN�s generic function SINH to evaluate the complex hyperbolic 
sine. 

Function Return Value 
SINH � Complex function value.   (Output) 

Required Arguments 
Z � Complex number representing the angle in radians for which the complex hyperbolic 

sine is desired.   (Input) 
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FORTRAN 90 Interface 
Generic: SINH(Z) 

Specific:  The specific interface names are CSINH and ZSINH. 

FORTRAN 77 Interface 
Complex: CSINH(Z) 

Double complex: The double complex function name is ZSINH. 

Example 
In this example, sinh(5 � i) is computed and printed. 

      USE SINH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (5.0, -1.0) 
      VALUE = SINH(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� SINH((�, F6.3, �,�, F6.3, �)) = (�,& 
           F7.3, �,�, F7.3, �)�) 
      END 

Output 
SINH(( 5.000,-1.000)) = ( 40.092,-62.446) 

Description 
The argument z must satisfy 

1/z �� �  

where � = AMACH(4) is the machine precision and �z is the imaginary part of z. 

COSH 
The function extends FORTRAN�s  generic function COSH to evaluate the complex hyperbolic 
cosine. 

Function Return Value 
COSH � Complex function value.   (Output) 
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Required Arguments 
Z � Complex number representing the angle in radians for which the hyperbolic cosine is 

desired.   (Input) 

FORTRAN 90 Interface 
Generic: COSH (Z) 

Specific:  The specific interface names are CCOSH and ZCOSH. 

FORTRAN 77 Interface 
Complex: CCOSH (Z) 

Double complex: The double  complex function name is ZCOSH. 

Example 
In this example, cosh(�2 + 2i) is computed and printed. 

      USE COSH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (-2.0, 2.0) 
      VALUE = COSH(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� COSH((�, F6.3, �,�, F6.3, �)) = (�,& 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
COSH((-2.000, 2.000)) = (-1.566,-3.298) 

Description 
Let � = AMACH(4) be the machine precision. If |�z| is larger than  

1/ �  

then the result will be less than half precision, and a recoverable error condition is reported. If |�
z| is larger than 1/�, the result has no precision and a fatal error is reported. Finally, if |
z| is too 
large, the result overflows and a fatal error results. Here, 
z and �z represent the real and 
imaginary parts of z, respectively. 
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TANH 
This function extends FORTRAN�s generic function TANH to evaluate the complex hyperbolic 
tangent. 

Function Return Value 
TANH � Complex function value.   (Output) 

Required Arguments 
Z � Complex number representing the angle in radians for which the hyperbolic tangent is 

desired.   (Input) 

FORTRAN 90 Interface 
Generic: TANH (Z) 

Specific:  The specific interface names are CTANH and ZTANH. 

FORTRAN 77 Interface 
Complex: CTANH (Z) 

Double complex: The double  complex function name is ZTANH. 

Example 
In this example, tanh(1 + i) is computed and printed. 

      USE TANH_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.0, 1.0) 
      VALUE = TANH(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� TANH((�, F6.3, �,�, F6.3, �)) = (�,& 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
TANH(( 1.000, 1.000)) = ( 1.084, 0.272) 
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Description 
Let z = x + iy. If |cosh z|� is very small, that is, if y mod 2� is very close to �/2 or 3�/2 and if x is 
small, then tanh z is nearly singular; a fatal error condition is reported. If |cosh z|� is somewhat 
larger but still small, then the result will be less accurate than half precision. When  
2y (z = x + iy) is so large that sin 2y cannot be evaluated accurately to even zero precision, the 
following situation results. If |x| < 3/2, then TANH cannot be evaluated accurately to better than 
one significant figure. If 3/2 � |y| < �1/2 ln (�/2), then TANH can be evaluated by ignoring the 
imaginary part of the argument; however, the answer will be less accurate than half precision. 
Here, � = AMACH(4) is the machine precision. 

ASINH 
This function evaluates the arc hyperbolic sine. 

Function Return Value 
ASINH � Function value.   (Output) 

Required Arguments 
X � Argument for which the arc hyperbolic sine is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ASINH (X) 

Specific:  The specific interface names are ASINH, DASINH, CASINH, and ZASINH. 

FORTRAN 77 Interface 
Single: ASINH (X) 

Double: The double precision function name is DASINH. 

Complex: The complex name is CASINH. 

Double Complex:  The double complex name is ZASINH 

Example 
In this example, sinh��(2.0) is computed and printed. 

      USE ASINH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
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      X     = 2.0 
      VALUE = ASINH(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ASINH(�, F6.3, �) = �, F6.3) 
      END 

Output 
ASINH( 2.000) = 1.444 

Description 
The function ASINH(X) computes the inverse hyperbolic sine of x, sinh��x. 

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow 
occur, where b = AMACH(2) is the largest floating point number. This error is not detected by 
ASINH. 

Additional Example 
In this example, sinh��(�1 + i) is computed and printed. 

      USE ASINH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (-1.0, 1.0) 
      VALUE = ASINH(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ASINH((�, F6.3, �,�, F6.3, �)) = (�, & 
              F6.3, �,�, F6.3, �)�) 
      END 

Output 
ASINH((-1.000, 1.000)) = (-1.061, 0.666) 

ACOSH 
This function evaluates the arc hyperbolic cosine. 

Function Return Value 
ACOSH � Function value.   (Output) 

Required Arguments 
X � Argument for which the arc hyperbolic cosine is desired.   (Input) 
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FORTRAN 90 Interface 
Generic: ACOSH (X) 

Specific:  The specific interface names are ACOSH, DACOSH, CACOSH, and ZACOSH. 

FORTRAN 77 Interface 
Single: ACOSH (X) 

Double: The double precision function name is DACOSH. 

Complex: The complex name is CACOSH. 

Double Complex:   The double complex name is ZACOSH. 

Example 
In this example, cosh��(1.4) is computed and printed. 

      USE ACOSH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.4 
      VALUE = ACOSH(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ACOSH(�, F6.3, �) = �, F6.3) 
      END 

Output 
ACOSH( 1.400) = 0.867 

Comments 
The result of ACOSH(X) is returned on the positive branch. Recall that, like SQRT(X), ACOSH(X) 
has multiple values. 

Description 
The function ACOSH(X) computes the inverse hyperbolic cosine of x, cosh��x. 

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow 
occur, where b = AMACH(2) is the largest floating point number. This error is not detected by 
ACOSH. 
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Additional Example 
In this example, cosh��(1 � i) is computed and printed. 

      USE ACOSH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.0, -1.0) 
      VALUE = ACOSH(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ACOSH((�, F6.3, �,�, F6.3, �)) = (�, & 
              F6.3, �,�, F6.3, �)�) 
      END 

Output 
ACOSH(( 1.000,-1.000)) = (-1.061, 0.905) 

ATANH 
This function evaluates the arc hyperbolic tangent. 

Function Return Value 
ATANH � Function value.   (Output) 

Required Arguments 
X � Argument for which the arc hyperbolic tangent is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ATANH (X) 

Specific:  The specific interface names are ATANH, DATANH, CATANH, and ZATANH 

FORTRAN 77 Interface 
Single: ATANH (X) 

Double: The double precision function name is DATANH. 

Complex: The complex name is CATANH. 

Double Complex:   The double complex name is ZATANH. 
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Example 
In this example, tanh��(�1/4) is computed and printed. 

      USE ATANH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = -0.25 
      VALUE = ATANH(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ATANH(�, F6.3, �) = �, F6.3) 
      END 

Output 
ATANH(-0.250) = -0.255 

Comments 
Informational error  
Type  Code  

    3    2 Result of ATANH(X) is accurate to less than one-half precision because the 
   absolute value of the argument is too close to 1.0. 

Description 
ATANH(X) computes the inverse hyperbolic tangent of x, tanh��x. The argument x must satisfy 

1x �� �  

where � = AMACH(4) is the machine precision. Note that |x| must not be so close to one that the 
result is less accurate than half precision. 

Additional Example 
In this example, tanh��(1/2 + i/2) is computed and printed. 

      USE ATANH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.5, 0.5) 
      VALUE = ATANH(Z) 
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!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ATANH((�, F6.3, �,�, F6.3, �)) = (�, & 
              F6.3, �,�, F6.3, �)�) 
      END 

Output 

              ATANH(( 0.500, 0.500)) = ( 0.402, 0.554) 
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Chapter 3: Exponential Integrals 
and Related Functions 

Routines 
Evaluates the exponential integral, Ei(x) ......................................EI 32 
Evaluates the exponential integral, E�(x).....................................E1 33 
Evaluates the scaled exponential integrals, integer order, 
En(x) ..........................................................................................ENE 35 
Evaluates the logarithmic integral, li(x) .......................................ALI 36 
Evaluates the sine integral, Si(x) ..................................................SI 38 
Evaluates the cosine integral, Ci(x) ............................................. CI 39 
Evaluates the cosine integral (alternate definition)....................CIN 40 
Evaluates the hyperbolic sine integral, Shi(x)............................SHI 42 
Evaluates the hyperbolic cosine integral, Chi(x)........................CHI 43 
Evaluates the hyperbolic cosine integral (alternate definition)CINH 44 

Usage Notes 
The notation used in this chapter follows that of Abramowitz and Stegun (1964). 

The following is a plot of the exponential integral functions that can be computed by the routines 
described in this chapter. 
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Figure 3-1   Plot of exE(x), E�(x) and Ei(x) 

EI 
This function evaluates the exponential integral for arguments greater than zero and the Cauchy 
principal value for arguments less than zero. 

Function Return Value 
EI � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: EI (X) 

Specific:  The specific interface names are S_EI and D_EI. 

FORTRAN 77 Interface 
Single: EI (X) 
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Double: The double precision function name is DEI. 

Example 
In this example, Ei(1.15) is computed and printed. 

      USE EI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.15 
      VALUE = EI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� EI(�, F6.3, �) = �, F6.3) 
      END 

Output 
EI( 1.150) =  2.304 

Comments 
If principal values are used everywhere, then for all X, EI(X) = �E1(�X) and E1(X) = �EI(�X) 

Description 
The exponential integral, Ei(x), is defined to be 

Ei( ) / for 0t

x
x e t dt x

�
�

�

� � ��  

The argument x must be large enough to insure that the asymptotic formula ex/x does not 
underflow, and x must not be so large that ex overflows. 

E1 
This function evaluates the exponential integral for arguments greater than zero and the Cauchy 
principal value of the integral for arguments less than zero. 

Function Return Value 
E1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the integral is to be evaluated.   (Input) 



 

 
 

34 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions 

 

 

 

FORTRAN 90 Interface 
Generic: E1 (X) 

Specific:  The specific interface names are S_E1 and D_E1. 

FORTRAN 77 Interface 
Single: E1 (X) 

Double: The double precision function name is DE1. 

Example 
In this example, E�(1.3) is computed and printed. 

      USE E1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.3 
      VALUE = E1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� E1(�, F6.3, �) = �, F6.3) 
      END 

Output 
E1( 1.300) =  0.135 

Comments 
          Informational error 

       Type    Code 

 2    1 The function underflows because X is too large. 

Description 
The alternate definition of the exponential integral, E�(x), is 

1( ) / for 0t

x
E x e t dt x

�
�

� ��  

The path of integration must exclude the origin and not cross the negative real axis. 

The argument x must be large enough that e�x does not overflow, and x must be small enough to 
insure that e�x/x does not underflow. 
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ENE 
Evaluates the exponential integral of integer order for arguments greater than zero scaled by 
EXP(X). 

Required Arguments 
X � Argument for which the integral is to be evaluated.    (Input) 

It must be greater than zero. 

N � Integer specifying the maximum order for which the exponential integral is to be 
calculated.    (Input) 

F � Vector of length N containing the computed exponential integrals scaled by EXP(X).    
(Output) 

FORTRAN 90 Interface 
Generic: CALL ENE (X, N, F) 

Specific:  The specific interface names are S_ENE and D_ENE. 

FORTRAN 77 Interface 
Single: CALL ENE  (X, N, F) 

Double: The double precision function name is DENE. 

Example 
In this example, En(10) for n = 1, ..., n is computed and printed. 

      USE ENE_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
! 
      INTEGER    K, NOUT 
      REAL       F(N), X 
!                                 Compute 
      X = 10.0 
      CALL ENE (X, N, F) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K, X, F(K) 
   10 CONTINUE 
99999 FORMAT (� E sub �, I2, � (�, F6.3, �) = �, F6.3) 
      END 
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Output 
E sub  1 (10.000) =  0.092 
E sub  2 (10.000) =  0.084 
E sub  3 (10.000) =  0.078 
E sub  4 (10.000) =  0.073 
E sub  5 (10.000) =  0.068 
E sub  6 (10.000) =  0.064 
E sub  7 (10.000) =  0.060 
E sub  8 (10.000) =  0.057 
E sub  9 (10.000) =  0.054 
E sub 10 (10.000) =  0.051 

Description 
The scaled exponential integral of order n, En(x), is defined to be 

1
( )       for 0x xt n

nE x e e t dt x
�

� �

� ��  

The argument x must satisfy x > 0. The integer n must also be greater than zero. This code is 
based on a code due to Gautschi (1974). 

ALI 
This function evaluates the logarithmic integral. 

Function Return Value 
ALI � Function value.    (Output) 

Required Arguments 
X � Argument for which the logarithmic integral is desired.   (Input) 

It must be greater than zero and not equal to one. 

FORTRAN 90 Interface 
Generic: ALI (X) 

Specific:  The specific interface names are S_ALI and D_ALI. 

FORTRAN 77 Interface 
Single: ALI (X) 

Double: The double precision function name is DALI. 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 37 

 

 

 

Example 
In this example, li(2.3) is computed and printed. 

      USE ALI_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 2.3 
      VALUE = ALI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ALI(�, F6.3, �) = �, F6.3) 
      END 

Output 
ALI( 2.300) =  1.439 

Comments 
    Informational error 

         Type     Code 

   3    2 Result of ALI(X) is accurate to less than one-half precision 
because X is too close to 1.0. 

Description 
The logarithmic integral, li(x), is defined to be 

0
li( ) for 0 and 1

ln
x dtx x x

t
� � � ��  

The argument x must be greater than zero and not equal to one. To avoid an undue loss of 
accuracy, x must be different from one at least by the square root of the machine precision. 

The function li(x) approximates the function �(x), the number of primes less than or equal to x. 
Assuming the Riemann hypothesis (all non-real zeros of �(z) are on the line 
z = 1/2), then 

li( ) ( ) ( ln )x x O x x� � �  
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Figure 3-2   Plot of li(x) and �(x) 

SI 
This function evaluates the sine integral. 

Function Return Value 
SI � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: SI (X) 

Specific:  The specific interface names are S_SI and D_SI. 

FORTRAN 77 Interface 
Single: SI (X) 

Double: The double precision function name is DSI. 
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Example 
In this example, Si(1.25) is computed and printed. 

      USE SI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.25 
      VALUE = SI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� SI(�, F6.3, �) = �, F6.3) 
      END 

Output 
SI( 1.250) =  1.146 

Description 
The sine integral, Si(x), is defined to be 

0
sinSi( )=

x tx dt
t�  

If  

1/x ��  

the answer is less accurate than half precision, while for |x| > 1 /�, the answer has no precision. 
Here, � = AMACH(4) is the machine precision. 

CI 
This function evaluates the cosine integral. 

Function Return Value 
CI � Function value.    (Output) 

Required Arguments 
X � Argument for which the function value is desired.    (Input) 

It must be greater than zero. 
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FORTRAN 90 Interface 
Generic: CI (X) 

Specific:  The specific interface names are S_CI and D_CI. 

FORTRAN 77 Interface 
Single: CI (X) 

Double: The double precision function name is DCI. 

Example 
In this example, Ci(1.5) is computed and printed. 

      USE CI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.5 
      VALUE = CI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� CI(�, F6.3, �) = �, F6.3) 
      END 

Output 
CI( 1.500) =  0.470 

Description 
The cosine integral, Ci(x), is defined to be 

0

1 cosCi( ) ln
x

t
tx x d

t
�

�

� � � �  

where �  0.57721566 is Euler�s constant.  

The argument x must be larger than zero. If  

1/x ��  

then the result will be less accurate than half precision. If x > 1/�, the result will have no 
precision.  Here, � = AMACH(4) is the machine precision. 

CIN 
This function evaluates a function closely related to the cosine integral. 
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Function Return Value 
CIN � Function value.    (Output) 

Required Arguments 
X � Argument for which the function value is desired.    (Input) 

FORTRAN 90 Interface 
Generic: CIN (X) 

Specific:  The specific interface names are S_CIN and D_CIN. 

FORTRAN 77 Interface 
Single: CIN (X) 

Double: The double precision function name is DCIN. 

Example 
In this example, Cin(2�) is computed and printed. 

      USE CIN_INT 
      USE UMACH_INT 
      USE CONST_INT 
!                                 Declare variables 
! 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = CONST(�pi�) 
      X     = 2.0* X 
      VALUE = CIN(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� CIN(�, F6.3, �) = �, F6.3) 
      END 

Output 
CIN( 6.283) =  2.438 

Comments 
Informational error 
Type Code 

   2    1 The function underflows because X is too small. 
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Description 
The alternate definition of the cosine integral, Cin(x), is 

0

1 cosCin( )
x tx dt

t
�

� �  

For  

0 x s� �  

where s = AMACH(1) is the smallest representable positive number, the result underflows. For  

1/x ��  

the answer is less accurate than half precision, while for |x| > 1 /�, the answer has no precision. 
Here, � = AMACH(4) is the machine precision. 

SHI 
This function evaluates the hyperbolic sine integral. 

Function Return Value 
SHI� function value.   (Output) 

SHI equals 

0
sinh( ) /

x
t t dt�  

Required Arguments 
X � Argument for which the function value is desired.    (Input) 

FORTRAN 90 Interface 
Generic: SHI (X) 

Specific:  The specific interface names are S_SHI and D_SHI. 

FORTRAN 77 Interface 
Single: SHI (X) 

Double: The double precision function name is DSHI. 

Example 
In this example, Shi(3.5) is computed and printed. 
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      USE SHI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 3.5 
      VALUE = SHI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� SHI(�, F6.3, �) = �, F6.3) 
      END 

Output 
SHI( 3.500) =  6.966 

Description 
The hyperbolic sine integral, Shi(x), is defined to be 

0

sinhShi( )
x tx dt

t
� �  

The argument x must be large enough that e�x/x does not underflow, and x must be small enough 
that ex does not overflow. 

CHI 
This function evaluates the hyperbolic cosine integral. 

Function Return Value 
CHI � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: CHI (X) 

Specific:  The specific interface names are S_CHI and D_CHI. 

FORTRAN 77 Interface 
Single: CHI (X) 
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Double: The double precision function name is DCHI. 

Example 
In this example, Chi(2.5) is computed and printed. 

      USE CHI_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 2.5 
      VALUE = CHI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� CHI(�, F6.3, �) = �, F6.3) 
      END 

Output 
CHI( 2.500) =  3.524 

Comments 
When X is negative, the principal value is used. 

Description 
The hyperbolic cosine integral, Chi(x), is defined to be 

0

cosh 1Chi( ) ln      for 0
x tx x dt x

t
�

�

� � � ��  

where �  0.57721566 is Euler�s constant. 

The argument x must be large enough that e�x/x does not underflow, and x must be small enough 
that ex does not overflow. 

CINH 
This function evaluates a function closely related to the hyperbolic cosine integral. 

Function Return Value 
CINH � Function value.    (Output) 

Required Arguments 
X � Argument for which the function value is desired.    (Input) 
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FORTRAN 90 Interface 
Generic: CINH (X) 

Specific:  The specific interface names are S_CINH and D_CINH. 

FORTRAN 77 Interface 
Single: CINH (X) 

Double: The double precision function name is DCINH. 

Example 
In this example, Cinh(2.5) is computed and printed. 

      USE CINH_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 2.5 
      VALUE = CINH(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� CINH(�, F6.3, �) = �, F6.3) 
      END 

Output 

             CINH( 2.500) =  2.031 

Comments 
Informational error 
Type Code 

   2    1 The function underflows because X is too small. 

Description 
The alternate definition of the hyperbolic cosine integral, Cinh(x), is 

0

cosh 1Cinh( )
x tx dt

t
�

� �  

For  

0 2x s� �  
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where s = AMACH(1) is the smallest representable positive number, the result underflows. The 
argument x must be large enough that e�x/x does not underflow, and x must be small enough that 
ex does not overflow. 
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Chapter 4: Gamma Function and 
Related Functions 

Routines 
4.1 Factorial Function 

Evaluates the factorial, n� .........................................................FAC 48 

Evaluates the binomial coefficient, n
m
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Usage Notes 
The notation used in this chapter follows that of Abramowitz and Stegun (1964). 

The following is a table of the functions defined in this chapter: 

FAC   n! = �(n + 1) 
BINOM  n!/m!(n � m)!, 0 � m � n 
GAMMA  � � 1

0 , 0, 1, 2,t xx e t dt x� � �� � � � �� �  

GAMR  1/�(x) 
ALNGAM  ln ��(x)�, x � 0, �1, �2, � 
ALGAMS  ln ��(x)� and sign �(x), x � 0, �1, �2, � 
GAMI  � � 1

0, , 0, 0x a ta x t e dt a x�
� �� � ��  

GAMIC  � � 1, , 0a t
xa x t e dt x� � �� � ��  

GAMIT  �*(a, x) = (x�a/�(a))�(a, x), x � 0 
PSI   �(x) = ��(x)/�(x), x � 0, �1, �2, � 
POCH  (a)x = �(a + x)/�(a), if a + x = 0, �1, �2, �  
   then a must = 0, �1, �2, � 
POCH1  ((a)x � 1)/x, if a + x = 0, �1, �2, � then a must = 0, �1, �2, � 
BETA  �(x�, x�) = �(x�)�(x�)/�(x� + x�), x� > 0 and x� > 0 
CBETA  �(z�, z�) = �(z�)�(z�)/�(z� + z�), z� > 0 and z� > 0 
ALBETA  ln �(a, b), a > 0, b > 0 
BETAI  Ix(a, b) = �x(a, b)/�(a, b), 0 � x � 1, a > 0, b > 0 

FAC 
This function evaluates the factorial of the argument. 

Function Return Value 
FAC � Function value.   (Output) 

See Comment 1. 

Required Arguments 
N � Argument for which the factorial is desired.   (Input) 

FORTRAN 90 Interface 
Generic: FAC (N) 

Specific:  The specific interface names are S_FAC and D_FAC. 
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FORTRAN 77 Interface 
Single: FAC (N) 

Double: The double precision function name is DFAC. 

Example 
In this example, 6! is computed and printed. 

      USE FAC_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N, NOUT 
      REAL       VALUE 
!                                 Compute 
      N     = 6 
      VALUE = FAC(N) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) N, VALUE 
99999 FORMAT (� FAC(�, I1, �) = �, F6.2) 
      END 

Output 
FAC(6) = 720.00 

Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = FAC(6) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(FAC(6)). 

If this is too much of a restriction on the programmer, then the specific name can be used 
without this restriction. 

To evaluate the factorial for nonintegral values of the argument, the gamma function should be 
used. For large values of the argument, the log gamma function should be used. 

Description 
The factorial is computed using the relation n! = �(n + 1). The function �(x) is defined in GAMMA 
on page 51. The argument n must be greater than or equal to zero, and it must not be so large 
that n! overflows. Approximately, n! overflows when nne�n overflows. 
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BINOM 
This function evaluates the binomial coefficient. 

Function Return Value 
BINOM � Function value.   (Output) 

See Comment 1. 

Required Arguments 
N � First parameter of the binomial coefficient.   (Input)  

N must be nonnegative. 

M � Second parameter of the binomial coefficient.   (Input)  
M must be nonnegative and less than or equal to N. 

FORTRAN 90 Interface 
Generic: BINOM (N, M) 

Specific:  The specific interface names are S_BINOM and D_BINOM. 

FORTRAN 77 Interface 
Single: BINOM (N, M) 

Double: The double precision function name is DBINOM. 

Example 

In this example, 
9
5
� �
� �
� �

 is computed and printed. 

      USE BINOM_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    M, N, NOUT 
      REAL       VALUE 
!                                 Compute 
      N     = 9 
      M     = 5 
      VALUE = BINOM(N, M) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) N, M, VALUE 
99999 FORMAT (� BINOM(�, I1, �,�, I1, �) = �, F6.2) 
      END 
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Output 
BINOM(9,5) = 126.00 

Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = BINOM(9, 5) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(BINOM(9, 5)). 

If this is too much of a restriction on the programmer, then the specific name can be used 
without this restriction. 

2. To evaluate binomial coefficients for nonintegral values of the arguments, the complete 
beta function or log beta function should be used. 

Description 
The binomial function is defined to be 

!
!( )!

n n
m m n m

� �
�� �

�� �
  

with n � m � 0. Also, n must not be so large that the function overflows. 

GAMMA 
This function evaluates the complete gamma function. 

Function Return Value 
GAMMA � Function value.   (Output) 

Required Arguments 
X � Argument for which the complete gamma function is desired.   (Input) 

FORTRAN 90 Interface 
Generic: GAMMA (X) 

Specific:  The specific interface names are S_GAMMA, D_GAMMA, and C_GAMMA. 
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FORTRAN 77 Interface 
Single: GAMMA (X) 

Double: The double precision function name is DGAMMA. 

Complex: The complex name is CGAMMA. 

Example 
In this example, �(5.0) is computed and printed. 

      USE GAMMA_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 5.0 
      VALUE = GAMMA(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� GAMMA(�, F6.3, �) = �, F6.3) 
      END 

Output 
GAMMA( 5.000) = 24.000 

Comments 
Informational errors 
 Type        Code 

   2    1         The function underflows because X is too small. 

   3    2          Result is accurate to less than one-half precision because X is too near a 
         negative integer. 

Description 
The gamma function, �(z), is defined to be 

� � 1

0
    for 0z tz t e dt z

�
� �

� � � ��  

For 
(z) < 0, the above definition is extended by analytic continuation.  

z must not be so close to a negative integer that the result is less accurate than half precision. If 

(z) is too small, then the result will underflow.  Users who need such values should use the log 
gamma function ALNGAM, page 55. When �(z)  0, 
(z) should be greater than x� so that the 
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result does not underflow, and 
(z) should be less than x� so that the result does not 
overflow. x� and x� are available by 

CALL R9GAML (XMIN, XMAX)  

Note that z must not be too far from the real axis because the result will underflow. 

 

Figure 4-1   Plot of �(x) and 1/�(x) 

Additional Example 
In this example, �(1.4 + 3i) is computed and printed. 

      USE GAMMA_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.4, 3.0) 
      VALUE = GAMMA(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� GAMMA(�, F6.3, �,�, F6.3, �) = (�, & 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
GAMMA( 1.400, 3.000) = (-0.001, 0.061) 
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GAMR 
This function evaluates the reciprocal gamma function. 

Function Return Value 
GAMR �  Function value.   (Output) 

Required Arguments 
X � Argument for which the reciprocal gamma function is desired.   (Input) 

FORTRAN 90 Interface 
Generic: GAMR (X) 

Specific: The specific interface names are S_GAMR, D_GAMR, and C_GAMR 

FORTRAN 77 Interface 
Single: GAMR (X) 

Double: The double precision function name is DGAMR. 

Complex: The complex name is CGAMR. 

Example 
In this example, 1/�(1.85) is computed and printed. 

      USE GAMR_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.85 
      VALUE = GAMR(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� GAMR(�, F6.3, �) = �, F6.3) 
      END 

Output 
GAMR( 1.850) = 1.058 

Comments 
This function is well behaved near zero and negative integers. 
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Description 
The function GAMR computes 1/�(z). See GAMMA (page 51) for the definition of �(z).  

For �(z)  0, z must be larger than x� so that 1/�(z) does not underflow, and x must be smaller 
than x� so that 1/��z) does not overflow. Symmetric overflow and underflow limits x� and  
x� are obtainable from 

CALL R9GAML (XMIN, XMAX)  

Note that z must not be too far from the real axis because the result will overflow there. 

Additional Example 
In this example, ln ��1.4 + 3i) is computed and printed. 

      USE GAMR_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.4, 3.0) 
      VALUE = GAMR(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� GAMR(�, F6.3, �,�, F6.3, �) = (�, F7.3, �,�, F7.3, �)�) 
      END 

Output 
GAMR( 1.400, 3.000) = ( -0.303,-16.367) 

ALNGAM 
The function evaluates the logarithm of the absolute value of the gamma function. 

Function Return Value 
ALNGAM � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ALNGAM (X) 

Specific: The specific interface names are S_ALNGAM, D_ALNGAM, and C_ALNGAM. 
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FORTRAN 77 Interface 
Single: ALNGAM (X) 

Double: The double precision function name is DLNGAM. 

Complex: The complex name is CLNGAM. 

Example 
In this example, ln ���1.85)� is computed and printed. 

      USE ALNGAM_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.85 
      VALUE = ALNGAM(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ALNGAM(�, F6.3, �) = �, F6.3) 
      END 

Output 
ALNGAM( 1.850) = -0.056 

Comments 
Informational error 
Type Code 

   3    2 Result of ALNGAM(X) is accurate to less than one-half precision because X is 
   too near a negative integer. 

Description 
The function ALNGAM computes ln ���x)�. See GAMMA (page 51) for the definition of ��x). 

The gamma function is not defined for integers less than or equal to zero. Also, |x| must not be 
so large that the result overflows. Neither should x be so close to a negative integer that the 
accuracy is worse than half precision. 
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Figure 4-2   Plot of log���x)� 

Additional Example 
In this example, ln ��1.4 + 3i) is computed and printed. 

      USE ALNGAM_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.4, 3.0) 
      VALUE = ALNGAM(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� ALNGAM(�, F6.3, �,�, F6.3, �) = (�,& 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
ALNGAM( 1.400, 3.000) = (-2.795, 1.589) 

ALGAMS 
Returns the logarithm of the absolute value of the gamma function and the sign of gamma. 
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Required Arguments 
X � Argument for which the logarithm of the absolute value of the gamma function is 

desired.   (Input) 

ALGM � Result of the calculation.   (Output) 

S � Sign of gamma(X).   (Output) 
If gamma(X) is greater than or equal to zero, S = 1.0. If gamma(X) is less than zero, 
S = �1.0. 

FORTRAN 90 Interface 
Generic: CALL ALGAMS (X, ALGM, S) 

Specific:  The specific interface names are S_ALGAMS and D_ALGAMS. 

FORTRAN 77 Interface 
Single: CALL ALGAMS (X, ALGM, S) 

Double: The double precision function name is DLGAMS. 

Example 
In this example, ln ���1.85)� and the sign of ��1.85) are computed and printed. 

      USE ALGAMS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, S, X 
!                                 Compute 
      X = 1.85 
      CALL ALGAMS(X, VALUE, S) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) X, VALUE 
99998 FORMAT (� Log Abs(Gamma(�, F6.3, �)) = �, F6.3) 
      WRITE (NOUT,99999) X, S 
99999 FORMAT (� Sign(Gamma(�, F6.3, �)) = �, F6.2) 
      END 

Output 
Log Abs(Gamma( 1.850)) = -0.056  
Sign(Gamma( 1.850)) = 1.00 
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Comments 
Informational error 
Type Code 

   3    2 Result of ALGAMS is accurate to less than one-half precision because X is too 
   near a negative integer. 

Description 
The function ALGAMS computes ln ���x)� and the sign of ��x). See GAMMA (page 51) for the 
definition of ��x). 

The result overflows if |x| is too large. The accuracy is worse than half precision if x is too close 
to a negative integer. 

GAMI 
This funciton evaluates the incomplete gamma function. 

Function Return Value 
GAMI � Function value.   (Output) 

Required Arguments 
A � The integrand exponent parameter.   (Input)  

It must be positive. 

X � The upper limit of the integral definition of GAMI.   (Input)  
It must be nonnegative. 

FORTRAN 90 Interface 
Generic: GAMI(A, X) 

Specific:  The specific interface names are S_GAMI and D_GAMI. 

FORTRAN 77 Interface 
Single: GAMI(A, X) 

Double: The double precision function name is DGAMI. 

Example 
In this example, �(2.5, 0.9) is computed and printed. 
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      USE GAMI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
!                                 Compute 
      A     = 2.5 
      X     = 0.9 
      VALUE = GAMI(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� GAMI(�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 
GAMI( 2.500, 0.900) = 0.1647 

Description 
The incomplete gamma function is defined to be 

� � 1

0
,      for 0 and 0

x a ta x t e dt a x�
� �

� � ��  

The function �(a, x) is defined only for a greater than zero. Although �(a, x) is well defined for  
x > ��, this algorithm does not calculate �(a, x) for negative x. For large a and sufficiently large 
x, �(a, x) may overflow. �(a, x) is bounded by ��a), and users may find this bound a useful guide 
in determining legal values of a. 

Because logarithmic variables are used, a slight deterioration of two or three digits of accuracy 
will occur when GAMI is very large or very small. 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 61 

 

 

 

 

Figure 4-3   Contour Plot of �(a, x) 

GAMIC 
Evaluates the complementary incomplete gamma function. 

Function Return Value 
GAMIC � Function value.   (Output) 

Required Arguments 
A � The integrand exponent parameter as per the remarks.   (Input) 

X � The upper limit of the integral definition of GAMIC.   (Input)  
If A is positive, then X must be positive. Otherwise, X must be nonnegative. 

FORTRAN 90 Interface 
Generic: GAMIC(A, X) 

Specific:  The specific interface names are S_GAMIC and D_GAMIC. 
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FORTRAN 77 Interface 
Single: GAMIC(A, X) 

Double: The double precision function name is DGAMIC. 

Example 
In this example, ��2.5, 0.9) is computed and printed. 

      USE GAMIC_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
!                                 Compute 
      A     = 2.5 
      X     = 0.9 
      VALUE = GAMIC(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� GAMIC(�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 
GAMIC( 2.500, 0.900) = 1.1646 

Comments 
Informational error 
Type Code 

   3    2 Result of GAMIC(A, X) is accurate to less than one-half precision because A 
   is too near a negative integer. 

Description 
The incomplete gamma function is defined to be  

� � 1, a t

x
a x t e dt

�
� �

� � �  

The only general restrictions on a are that it must be positive if x is zero; otherwise, it must not 
be too close to a negative integer such that the accuracy of the result is less than half precision. 
Furthermore, ��a, x) must not be so small that it underflows, or so large that it overflows. 
Although ��a, x) is well defined for x > �� and a > 0, this algorithm does not calculate ��a, x) 
for negative x.  

The function GAMIC is based on a code by Gautschi (1979). 
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GAMIT 
This function evaluates the Tricomi form of the incomplete gamma function. 

Function Return Value 
GAMIT � Function value.   (Output) 

Required Arguments 
A � The integrand exponent parameter as per the comments.   (Input) 

X � The upper limit of the integral definition of GAMIT.   (Input)  
It must be nonnegative. 

FORTRAN 90 Interface 
Generic: GAMIT(A, X) 

Specific: The specific interface names are S_GAMIT and D_GAMIT. 

FORTRAN 77 Interface 
Single: GAMIT(A, X) 

Double: The double precision function name is DGAMIT. 

Example 
In this example, ��(3.2, 2.1) is computed and printed. 

      USE GAMIT_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
!                                 Compute 
      A     = 3.2 
      X     = 2.1 
      VALUE = GAMIT(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� GAMIT(�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 
GAMIT( 3.200, 2.100) = 0.0284 
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Comments 
Informational error 
Type Code 

   3    2 Result of GAMIT(A, X) is accurate to less than one-half precision because A 
   is too close to a negative integer. 

Description 
The Tricomi�s incomplete gamma function is defined to be 

1( , )*( , )
( ) ( )

a a
a t

x

x a x xa x t e dt
a a

�
�

� �

�
� �

� �
� �

�  

where �(a, x) is the incomplete gamma function. See GAMI (page 59) for the definition of �(a, x).  

The only general restriction on a is that it must not be too close to a negative integer such that 
the accuracy of the result is less than half precision. Furthermore, ���(a, x)� must not underflow 
or overflow. Although ��(a, x) is well defined for x > ��, this algorithm does not calculate � * 
(a, x) for negative x. 

A slight deterioration of two or three digits of accuracy will occur when GAMIT is very large or 
very small in absolute value because logarithmic variables are used. Also, if the parameter a is 
very close to a negative integer (but not quite a negative integer), there is a loss of accuracy 
which is reported if the result is less than half machine precision.  

The function GAMIT is based on a code by Gautschi (1979). 

PSI 
This function evaluates the logarithmic derivative of the gamma function. 

Function Return Value 
PSI � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: PSI (X) 

Specific:  The specific interface names are S_PSI, D_PSI, and C_PSI. 

FORTRAN 77 Interface 
Single: PSI (X) 
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Double: The double precision function name is DPSI. 

Complex: The complex name is CPSI. 

Example 
In this example, �(1.915) is computed and printed. 

      USE PSI_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.915 
      VALUE = PSI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� PSI(�, F6.3, �) = �, F6.3) 
      END 

Output 
PSI( 1.915) = 0.366 

Comments 
Informational error 
Type Code 

   3    2 Result of PSI(X) is accurate to less than one-half precision because X is too 
   near a negative integer. 

Description 
The psi function, also called the digamma function, is defined to be 

( )( ) ln ( )
( )

d xx x
dx x

�
��

� � �
�

 

See GAMMA (page 51) for the definition of ��x).  

The argument x must not be exactly zero or a negative integer, or �(x) is undefined. Also, x 
must not be too close to a negative integer such that the accuracy of the result is less than half 
precision. 

Additional Example 
In this example, �(1.9 + 4.3i) is computed and printed. 

      USE PSI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
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      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.9, 4.3) 
      VALUE = PSI(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� PSI(�, F6.3, �,�, F6.3, �) = (�, F6.3, �,�, F6.3, �)�) 
      END 

Output 
PSI( 1.900, 4.300) = ( 1.507, 1.255) 

POCH 
This function evaluates a generalization of Pochhammer�s symbol. 

Function Return Value 
POCH � Function value.   (Output)  

The generalized Pochhammer symbol is ��a + x)/��a). 

Required Arguments 
A � The first argument.   (Input) 

X � The second, differential argument.   (Input) 

FORTRAN 90 Interface 
Generic: POCH (A, X) 

Specific:  The specific interface names are S_POCH and D_POCH. 

FORTRAN 77 Interface 
Single: POCH (A, X) 

Double: The double precision function name is DPOCH. 

Example 
In this example, (1.6)��� is computed and printed. 

      USE POCH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
 !                                 Compute 
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      A     = 1.6 
      X     = 0.8 
      VALUE = POCH(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� POCH(�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 
POCH( 1.600, 0.800) = 1.3902 

Comments 
1. Informational errors 

Type Code  

    3    2 Result of POCH(A, X) is accurate to less than one-half precision because the 
  absolute value of the X is too large. Therefore, A + X cannot be evaluated 
  accurately. 

          3    2 Result of POCH(A, X) is accurate to less than one-half precision because  
  either A or A + X is too close to a negative integer. 

2.  For X a nonnegative integer, POCH(A, X) is just Pochhammer�s symbol. 

Description 
Pochhammer�s symbol is (a)n = (a)(a  � 1)�(a � n + 1) for n a nonnegative integer. 
Pochhammer�s generalized symbol is defined to be 

( )( )
( )x

a xa
a

� �
�

�
 

See GAMMA (page 51) for the definition of ��x).  

Note that a straightforward evaluation of Pochhammer�s generalized symbol with either gamma 
or log gamma functions can be especially unreliable when a is large or x is small. 

Substantial loss can occur if a + x or a are close to a negative integer unless |x| is sufficiently 
small. To insure that the result does not overflow or underflow, one can keep the arguments a 
and a + x well within the range dictated by the gamma function routine GAMMA or one can keep 
|x| small whenever a is large. POCH also works for a variety of arguments outside these rough 
limits, but any more general limits that are also useful are difficult to specify. 

POCH1 
This function evaluates a generalization of Pochhammer�s symbol starting from the first order. 
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Function Return Value 
POCH1 � Function value.   (Output)  

POCH1(A, X) = (POCH(A, X) � 1)/X. 

Required Arguments 
A � The first argument.   (Input) 

X � The second, differential argument.   (Input) 

FORTRAN 90 Interface 
Generic: POCH1 (A, X) 

Specific:  The specific interface names are S_POCH1 and D_POCH1. 

FORTRAN 77 Interface 
Single: POCH1 (A, X) 

Double: The double precision function name is DPOCH1. 

Example 
In this example, POCH1(1.6, 0.8) is computed and printed. 

      USE POCH1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
!                                 Compute 
      A     = 1.6 
      X     = 0.8 
      VALUE = POCH1(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� POCH1(�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 
POCH1( 1.600, 0.800) = 0.4878 

Description 
Pochhammer�s symbol from the first order is defined to be 

� �
( ) 1 ( ), /

( ) 1
xa a xa x x
x a
� � �

� �
� �

POCH1  
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where (a)x is Pochhammer�s generalized symbol. See POCH (page 66) for the definition of (a)x. 
It is useful in special situations that require especially accurate values when x is small. This 
specification is particularly suited for stability when computing expressions such as 

� � � �
( ) ( ) / , ,

( ) ( )
a x b x x a x b x

a b
� �� � � �

� � �� �� �	 

POCH1 POCH1  

Note that POCH1(a, 0) = �(a). See PSI (page 64) for the definition of �(a). 

When |x| is so small that substantial cancellation will occur if the straightforward formula is 
used, we use an expansion due to fields and discussed by Luke (1969). 

The ratio (a)x = ��a + x)/��a) is written by Luke as (a + (x � 1)/2)x times a polynomial in  
(a + (x � 1)/2)��. To maintain significance in POCH1, we write for positive a. 

(a + (x � 1)/2)x = exp(x ln(a + (x � 1)/2)) = eq = 1 + qEXPRL(q) 

where EXPRL = (ex � 1)/x. Likewise, the polynomial is written P = 1 + xP�(a, x). Thus, 

POCH1 (a, x) = ((a)x � 1)/x = EXPRL(q)(q/x + qP�(a, x)) + P�(a, x) 

Substantial significance loss can occur if a + x or a are close to a negative integer even when �x� 
is very small. To insure that the result does not overflow or underflow, one can keep the 
arguments a and a + x well within the range dictated by the gamma function routine GAMMA 
(page 51) or one can keep �x� small whenever a is large. POCH also works for a variety of 
arguments outside these rough limits, but any more general limits that are also useful are 
difficult to specify. 

BETA 
This function evaluates the complete beta function. 

Function Return Value 
BETA � Function value.   (Output) 

Required Arguments 
A � First beta parameter.   (Input)  

For real arguments, A must be positive. 

B � Second beta parameter.   (Input)  
For real arguments, B must be positive. 

FORTRAN 90 Interface 
Generic: BETA(A, B) 

Specific:  The specific interface names are S_BETA, D_BETA, and C_BETA. 
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FORTRAN 77 Interface 
Single: BETA(A, B) 

Double: The double precision function name is DBETA. 

Complex: The complex name is CBETA. 

Example 
In this example, �(2.2, 3.7) is computed and printed. 

      USE BETA_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
!                                 Compute 
      A     = 2.2 
      X     = 3.7 
      VALUE = BETA(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� BETA(�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 
BETA( 2.200, 3.700) = 0.0454 

Comments 
Informational error  
Type  Code  

   2    1 The function underflows because A and/or B is too large. 

Description 
The beta function is defined to be 

1 1 1

0

( ) ( )( , ) (1 )
( )

a ba ba b t t dt
a b

�
� �

� �
� � �

� �
�  

See GAMMA (page 51) for the definition of ��x).  

For real arguments the function BETA requires that both arguments be positive. In addition, the 
arguments must not be so large that the result underflows. 

For complex arguments, the arguments a and a + b must not be close to negative integers. The 
arguments should not be so large (near the real axis) that the result underflows. Also, a + b 
should not be so far from the real axis that the result overflows. 
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Additional Example 
In this example, �(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed. 

      USE BETA_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    A, B, VALUE 
!                                 Compute 
      A     = (1.7, 2.2) 
      B     = (3.7, 0.4) 
      VALUE = BETA(A, B) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, B, VALUE 
99999 FORMAT (� BETA((�, F6.3, �,�, F6.3, �), (�, F6.3, �,�, F6.3,& 
           �)) = (�, F6.3, �,�, F6.3, �)�) 
      END 

Output 
BETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-0.033,-0.017) 

ALBETA 
This function evaluates the natural logarithm of the complete beta function for positive arguments. 

Function Return Value 
ALBETA � Function value.   (Output)  

ALBETA returns ln �(A, B) = ln(��A)��B))/��A + B). 

Required Arguments 
A � The first argument of the BETA function.   (Input)  

For real arguments, A must be greater than zero. 

B � The second argument of the BETA function.   (Input)  
For real arguments, B must be greater than zero. 

FORTRAN 90 Interface 
Generic: ALBETA (A, B) 

Specific:  The specific interface names are S_ALBETA, D_ALBETA, and C_ALBETA. 

FORTRAN 77 Interface 
Single: ALBETA (A, B) 
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Double: The double precision function name is DLBETA. 

Complex: The complex name is CLBETA. 

Example 
In this example, ln �(2.2, 3.7) is computed and printed. 

      USE ALBETA_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       A, VALUE, X 
!                                 Compute 
      A     = 2.2 
      X     = 3.7 
      VALUE = ALBETA(A, X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, X, VALUE 
99999 FORMAT (� ALBETA(�, F6.3, �,�, F6.3, �) = �, F8.4) 
      END 

Output 
ALBETA( 2.200, 3.700) = -3.0928 

Comments 
Note that ln �(A, B) = ln �(B, A). 

Description 
ALBETA computes ln �(a, b) = ln �(b, a). See BETA (page 69) for the definition of �(a, b).  

For real arguments, the function ALBETA is defined for a > 0 and b > 0. It returns accurate 
results even when a or b is very small. It can overflow for very large arguments; this error 
condition is not detected except by the computer hardware. 

For complex arguments, the arguments a, b and a + b must not be close to negative integers 
(even though some combinations ought to be allowed). The arguments should not be so large 
that the logarithm of the gamma function overflows (presumably an improbable condition). 

Additional Example 
In this example, ln �(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed. 

      USE ALBETA_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    A, B, VALUE 
!                                 Compute 
      A     = (1.7, 2.2) 
      B     = (3.7, 0.4) 
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      VALUE = ALBETA(A, B) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) A, B, VALUE 
99999 FORMAT (� ALBETA((�, F6.3, �,�, F6.3, �), (�, F6.3, �,�, F6.3, & 
           �)) = (�, F6.3, �,�, F6.3, �)�) 
      END 

Output 
ALBETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-3.280,-2.659) 

BETAI 
This function evaluates the incomplete beta function ratio. 

Function Return Value 
BETAI � Probability that a random variable from a beta distribution having parameters PIN 

and QIN will be less than or equal to X.   (Output) 

Required Arguments 
X � Upper limit of integration.   (Input)  

X must be in the interval (0.0, 1.0) inclusive. 

PIN � First beta distribution parameter.   (Input)  
PIN must be positive. 

QIN � Second beta distribution parameter.   (Input)  
QIN must be positive. 

FORTRAN 90 Interface 
Generic: BETAI(X, PIN, QIN) 

Specific:  The specific interface names are S_BETAI and D_BETAI. 

FORTRAN 77 Interface 
Single: BETAI(X, PIN, QIN) 

Double: The double precision function name is DBETAI. 
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Example 
In this example, I����(2.2, 3.7) is computed and printed. 

      USE BETAI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       PIN, QIN, VALUE, X 
!                                 Compute 
      X     = 0.61 
      PIN   = 2.2 
      QIN   = 3.7 
      VALUE = BETAI(X, PIN, QIN) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, PIN, QIN, VALUE 
99999 FORMAT (� BETAI(�, F6.3, �,�, F6.3, �,�, F6.3, �) = �, F6.4) 
      END 

Output 

              BETAI( 0.610, 2.200, 3.700) = 0.8822 

Description 
The incomplete beta function is defined to be 

1 1

0

( , ) 1( , ) (1 )
( , ) ( , )

for 0 1, 0, 0

x p qx
x

p q
I p q t t dt

p q p q
x p q

�

� �

� �

� � �

� � � �

�  

See BETA (page 69) for the definition of �(p, q).  

The parameters p and q must both be greater than zero. The argument x must lie in the range 0 
to 1. The incomplete beta function can underflow for sufficiently small x and large p; however, 
this underflow is not reported as an error. Instead, the value zero is returned as the function 
value.  

The function BETAI is based on the work of Bosten and Battiste (1974). 
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Chapter 5: Error Function and 
Related Functions 

Routines 
5.1. Error Functions 

Evaluates the error function, erf x.............................................ERF 76 
Evaluates the complementary error function, erfc x .............. ERFC 77 
Evaluates the scaled complementary error function,  

 xe x
2
erfc .............................................................................ERFCE 79 

Evaluates a scaled function related to erfc,  
� � �

�

ze iz
2

erfc ......................................................................CERFE 80 
Evaluates the inverse error function, erf�� x.............................ERFI 82 
Evaluates the inverse complementary error function,  
erfc�� x................................................................................... ERFCI 83 
Evaluates Dawson�s function................................................ DAWS 85 

5.2. Fresnel Integrals 
Evaluates the cosine Fresnel integral, C(x).........................FRESC 86 
Evaluate the sine Fresnel integral, S(x)...............................FRESS 88 

Usage Notes 
The error function is  

2

0

2erf ( )
x tx e dt

�

�

� �  

The complementary error function is erfc(x) = 1 � erf(x). Dawson�s function is 

2 2

0

x
x te e dt� �  

The Fresnel integrals are  

2

0
( ) cos

2
x

C x t dt�� �
� � �

� �
�  
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and 

2

0
( ) sin

2
x

S x t dt�� �
� � �

� �
�  

They are related to the error function by 

1( ) ( ) erf (1 )
2 2

iC z iS z i z�� ��
� � �� �� �

� 	
 

ERF 
This function evaluates the error function. 

Function Return Value 
ERF � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ERF (X) 

Specific:  The specific interface names are S_ERF and D_ERF. 

FORTRAN 77 Interface 
Single: ERF (X) 

Double: The double precision function name is DERF. 

Example 
In this example, erf(1.0) is computed and printed. 

      USE ERF_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.0 
      VALUE = ERF(X) 
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!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ERF(�, F6.3, �) = �, F6.3) 
      END 

Output 
ERF( 1.000) = 0.843 

Description 
The error function, erf(x), is defined to be 

2

0

2erf ( )
x

tx e dt
�

�
� �  

All values of x are legal. 

 
Figure 5-1   Plot of erf x 

ERFC 
This function evaluates the complementary error function. 

Function Return Value 
ERFC � Function value.   (Output) 
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Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ERFC(X) 

Specific:  The specific interface names are S_ERFC and D_ERFC. 

FORTRAN 77 Interface 
Single: ERFC(X) 

Double: The double precision function name is DERFC. 

Example 
In this example, erfc(1.0) is computed and printed. 

      USE ERFC_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.0 
      VALUE = ERFC(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ERFC(�, F6.3, �) = �, F6.3) 
      END 

Output 
ERFC( 1.000) = 0.157 

Comments 
Informational error 
Type  Code  

   2     1  The function underflows because X is too large. 

Description 
The complementary error function, erfc(x), is defined to be 

2
2erfc( ) t

x
x e dt

�

�

�
� �  

The argument x must not be so large that the result underflows. Approximately, x should be less 
than  
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where s = AMACH(1) (see the Reference Material section of this manual) is the smallest 
representable positive floating-point number. 

 
Figure 5-2   Plot of erfc x 

ERFCE 
This function evaluates the exponentially scaled complementary error function. 

Function Return Value 
ERFCE � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ERFCE (X) 

Specific:  The specific interface names are S_ERFCE and D_ERFCE. 
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FORTRAN 77 Interface 
Single: ERFCE (X) 

Double: The double precision function name is DERFCE. 

Example 
In this example, ERFCE(1.0) = e��� erfc(1.0) is computed and printed. 

      USE ERFCE_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.0 
      VALUE = ERFCE(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ERFCE(�, F6.3, �) = �, F6.3) 
      END 

Output 
ERFCE( 1.000) = 0.428 

Comments 
Informational error 
Type Code 

   2    1 The function underflows because X is too large. 

Description 
The function ERFCE(X) computes  

� �
2

erfc xe x  

where erfc(x) is the complementary error function. See ERFC (page 77) for its definition. 

To prevent the answer from underflowing, x must be greater than  

min ln( / 2)x b� ��  

where b =  AMACH(2) is the largest representable floating-point number. 

CERFE 
This function evaluates a scaled function related to ERFC.. 
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Function Return Value 
CERFE � Complex function value.   (Output) 

Required Arguments 
Z � Complex argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: CERFE (Z) 

Specific:  The specific interface names are C_CERFE and Z_CERFE. 

FORTRAN 77 Interface 
Complex: CERFE (Z) 

Double complex: The double  complex function name is ZERFE. 

Example 
In this example, CERFE(2.5 + 2.5i) is computed and printed. 

      USE CERFE_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (2.5, 2.5) 
      VALUE = CERFE(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CERFE(�, F6.3, �,�, F6.3, �) = (�, & 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
CERFE( 2.500, 2.500) = ( 0.117, 0.108) 

Description 
Function CERFCE is defined to be 

2 2 22erfc( )z z t

z
e iz ie e dt

�

�
� �

� � � �  

Let b = AMACH(2) be the largest floating-point number. The argument z must satisfy 

z b�  
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or else the value returned is zero. If the argument z does not satisfy (�z)� � (�z)� � log b, then b 
is returned. All other arguments are legal (Gautschi 1969, 1970). 

ERFI 
This function evaluates the inverse error function. 

Function Return Value 
ERFI � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ERFI (X) 

Specific:  The specific interface names are S_ERFI and D_ERFI. 

FORTRAN 77 Interface 
Single: ERFI (X) 

Double: The double precision function name is DERFI. 

Example 
In this example, erf��(erf(1.0)) is computed and printed. 

      USE ERFI_INT 
      USE ERF_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = ERF(1.0) 
      VALUE = ERFI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ERFI(�, F6.3, �) = �, F6.3) 
      END 

Output 
ERFI( 0.843) = 1.000 
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Comments 
Informational error 
Type Code  

   3    2 Result of ERFI(X) is accurate to less than one-half precision because the 
   absolute value of the argument is too large. 

Description 
Function ERFI(X) computes the inverse of the error function erf x, defined in ERF (page 76). 

The function ERFI(X) is defined for |x| < 1. If x� < |x| < 1, then the answer will be less 
accurate than half precision. Very approximately,  

max 1 /(4 )x � �� �  

where � = AMACH(4) is the machine precision. 

 

Figure 5-3   Plot of erf��x 

ERFCI 
This function evaluates the inverse complementary error function. 

Function Return Value 
ERFCI � Function value.   (Output) 
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Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: ERFCI (X) 

Specific:  The specific interface names are S_ERFCI and D_ERFCI. 

FORTRAN 77 Interface 
Single: ERFCI (X) 

Double: The double precision function name is DERFCI. 

Example 
In this example, erfc��(erfc(1.0)) is computed and printed. 

      USE ERFCI_INT 
      USE ERFC_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = ERFC(1.0) 
      VALUE = ERFCI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ERFCI(�, F6.3, �) = �, F6.3) 
      END 

Output 
ERFCI( 0.157) = 1.000 

Comments 
Informational error 
Type  Code 

   3    2 Result of ERFCI(X) is accurate to less than one-half precision because the 
   argument is too close to 2.0. 

Description 
The function ERFCI(X) computes the inverse of the complementary error function erfc x, 
defined in ERFC (page 77). 
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The function ERFCI(X) is defined for 0 < x < 2. If x� < x < 2, then the answer will be less 
accurate than half precision. Very approximately, 

max 2 /(4 )x � �� �  

where � = AMACH(4) is the machine precision. 

 

Figure 5-4   Plot of erf��x 

DAWS 
This function evaluates Dawson�s function. 

Function Return Value 
DAWS � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: DAWS (X) 

Specific: The specific interface names are S_DAWS and D_DAWS. 



 

 
 

86 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions 

 

 

 

FORTRAN 77 Interface 
Single: DAWS (X) 

Double: The double precision function name is DDAWS. 

Example 
In this example, DAWS(1.0) is computed and printed. 

      USE DAWS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.0 
      VALUE = DAWS(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� DAWS(�, F6.3, �) = �, F6.3) 
      END 

Output 
DAWS( 1.000) = 0.538 

Comments 
1. Informational error  

Type Code  

   2    1  The function underflows because the absolute value of X is too large. 

2. The Dawson function is closely related to the error function for imaginary arguments. 

Description 
Dawson�s function is defined to be 

2 2

0

xx te e dt�

�  

It is closely related to the error function for imaginary arguments.  

So that Dawson�s function does not underflow, |x| must be less than 1/(2s). Here, s = AMACH(1) 
is the smallest representable positive floating-point number. 

FRESC 
This function evaluates the cosine Fresnel integral. 
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Function Return Value 
FRESC � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: FRESC (X) 

Specific:  The specific interface names are S_FRESC and D_FRESC. 

FORTRAN 77 Interface 
Single: FRESC (X) 

Double: The double precision function name is DFRESC. 

Example 
In this example, C(1.75) is computed and printed. 

      USE FRESC_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.75 
      VALUE = FRESC(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� FRESC(�, F6.3, �) = �, F6.3) 
      END 

Output 
FRESC( 1.750) = 0.322 

Description 
The cosine Fresnel integral is defined to be 

2

0
( ) cos

2
x

C x t dt�� �
� � �

� �
�  

All values of x are legal. 
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FRESS 
This function evaluates the sine Fresnel integral. 

Function Value Return  
FRESS � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: FRESS (X) 

Specific:  The specific interface names are S_FRESS and D_FRESS. 

FORTRAN 77 Interface 
Single: FRESS (X) 

Double: The double precision function name is DFRESS. 

Example 
In this example, S(1.75) is computed and printed. 

      USE FRESS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 1.75 
      VALUE = FRESS(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� FRESS(�, F6.3, �) = �, F6.3) 
      END 

Output 
FRESS( 1.750) = 0.499 
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Description 
The sine Fresnel integral is defined to be 

2

0
( ) sin

2
x

S x t dt�� �
� � �

� �
�  

All values of x are legal. 
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Chapter 6: Bessel Functions 

Routines 
6.1. Bessel Functions of Order 0 and 1 

Evaluates J�(x) ........................................................................ BSJ0 92 
Evaluates J�(x) ........................................................................ BSJ1 94 
Evaluates Y�(x) .......................................................................BSY0 95 
Evaluates Y�(x) .......................................................................BSY1 97 
Evaluates I�(x).......................................................................... BSI0 98 
Evaluates I�(x).......................................................................... BSI1 100 
Evaluates K�(x) .......................................................................BSK0 101 
Evaluates K�(x) .......................................................................BSK1 103 

Evaluates e�|x|I�(x).................................................................BSI0E 104 

Evaluates e�|x|I�(x).................................................................BSI1E 106 
Evaluates exK�(x) ................................................................. BSK0E 107 
Evaluates exK�(x) ................................................................. BSK1E 108 

6.2. Series of Bessel Functions, Integer Order 
Evaluates Jk(x), k = 0, �, n � 1 ........................................... BSJNS 109 
Evaluates Ik(x), k = 0, �, n � 1 ............................................. BSINS 111 
 

6.3. Series of Bessel Functions, Real Order and Argument 
Evaluates J� � k(x), k = 0, �, n � 1 ..........................................BSJS 113 
Evaluates Y� � k(x), k = 0, �, n � 1 ........................................ BSYS 115 
Evaluates I� � k(x), k = 0, �, n � 1 ............................................BSIS 117 

Evaluates e�xI� � k(x), k = 0, �, n � 1 .................................... BSIES 118 
Evaluates K� � k(x), k = 0, �, n � 1 ........................................ BSKS 120 

Evaluates exK� � k(x), k = 0, �, n � 1...................................BSKES 121 

6.4. Series of Bessel Functions, Real Order and Complex Argument 
Evaluates J� � k(z), k = 0, �, n � 1 ..........................................CBJS 123 
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Evaluates Y� � k(z), k = 0, �, n � 1 .........................................CBYS 125 
Evaluates I� � k(z), k = 0, �, n � 1 ...........................................CBIS 127 
Evaluates K� � k(z), k = 0, �, n � 1 .........................................CBKS 129 

Usage Notes 
The following table lists the Bessel function routines by argument and order type: 

 Real Argument Complex Argument 
 Order Order 
Function 0 1 integer real Integer Real 
J�(x) BSJ0 

p. 92 
BSJ1 
p. 94 

BSJNS 
p. 109 

BSJS 
p. 113 

BSJNS 
p. 109 

CBJS 
p. 123 

Y�(x) BSY0 
p. 95 

BSY1 
p. 97 

 BSYS 
p. 115 

 CBYS 
p. 125 

I�(x) BSI0 
p. 98 

BSI1 
p. 100 

BSINS 
p. 111 

BSIS 
p. 117 

BSINS 
p. 111 

CBIS 
p. 127 

e�|x|I�(x) BSI0E
p. 104 

BSI1E
p. 106 

 BSIES
p. 118 

  

K�(x) BSK0 
p. 101 

BSK1 
p. 103 

 BSKS 
p. 120 

 CBKS 
p. 129 

e�|x|K�(x) BSK0E
p. 107 

BSK1E
p. 108 

 BSKES
p. 121 

  

BSJ0 
This function evaluates the Bessel function of the first kind of order zero. 

Function Value Return 
BSJ0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: BSJ0 (X) 

Specific:  The specific interface names are S_BSJ0 and D_BSJ0. 

FORTRAN 77 Interface 
Single: BSJ0 (X) 
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Double: The double precision function name is DBSJ0. 

Example 
In this example, J�(3.0) is computed and printed. 

      USE BSJ0_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 3.0 
      VALUE = BSJ0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSJ0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSJ0( 3.000) = -0.260 

Description 
The Bessel function J�(x) is defined to be 

� � � �0 0

1 cos sinJ x x d
�

� �
�

� �  

To prevent the answer from being less accurate than half precision, |x| should be smaller than  

1/ �  

For the result to have any precision at all, |x| must be less than 1/�. Here, � is the machine 
precision, � = AMACH(4). 
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Figure 6-1   Plot of J�(x) and J�(x) 

BSJ1 
This function evaluates the Bessel function of the first kind of order one. 

Function Return Value 
BSJ1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSJ1 (X) 

Specific:  The specific interface names are S_BSJ1 and D_BSJ1. 

FORTRAN 77 Interface 
Single: BSJ1 (X) 

Double: The double precision function name is DBSJ1. 
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Example 
In this example, J�(2.5) is computed and printed. 

      USE BSJ1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 2.5 
      VALUE = BSJ1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSJ1(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSJ1( 2.500) = 0.497 

Comments 
Informational error  
Type Code  

 2      1  The function underflows because the absolute value of X is too small. 

Description 
The Bessel function J�(x) is defined to be 

� � � �1 0

1 cos sinθ θ θJ x x d
�

�
� ��  

The argument x must be zero or larger in absolute value than 2s to prevent J�(x) from 
underflowing. Also, |x| should be smaller than  

1/ �  

to prevent the answer from being less accurate than half precision. |x| must be less than 1/� for 
the result to have any precision at all. Here, � is the machine precision, � = AMACH(4), and 
s = AMACH(1) is the smallest representable positive floating-point number. 

BSY0 
This function evaluates the Bessel function of the second kind of order zero. 

Function Return Value 
BSY0 � Function value.   (Output) 
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Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSY0 (X) 

Specific:  The specific interface names are S_BSY0 and D_BSY0. 

FORTRAN 77 Interface 
Single: BSY0 (X) 

Double: The double precision function name is DBSY0. 

Example 
In this example, Y�(3.0) is computed and printed. 

      USE BSY0_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 3.0 
      VALUE = BSY0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSY0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSY0( 3.000) = 0.377 

Description 
The Bessel function Y�(x) is defined to be 

� � � � sinh
0 0 0

1 2sin sin z tY x x d e dt
�

� �
� �

�
�

� �� �  

To prevent the answer from being less accurate than half precision, x should be smaller than 

1/ �  

For the result to have any precision at all, |x| must be less than 1/�. Here, � is the machine 
precision, � = AMACH(4). 
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Figure 6-2   Plot of Y�(x) and Y�(x) 

BSY1 
This function evaluates the Bessel function of the second kind of order one. 

Function Return Value 
BSY1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSY1 (X) 

Specific:  The specific interface names are S_BSY1 and D_BSY1. 

FORTRAN 77 Interface 
Single: BSY1 (X) 



 

 
 

98 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions 

 

 

 

Double: The double precision function name is DBSY1. 

Example 
In this example, Y�(3.0) is computed and printed. 

      USE BSY1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 3.0 
      VALUE = BSY1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSY1(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSY1( 3.000) = 0.325 

Description 
The Bessel function Y�(x) is defined to be 

� � � � � � sinh
1 0 0

1 1sin sin t t z tY x x d e e e dt
�

� � �
� �

�
� �

� � � � �� �  

Y�(x) is defined for x > 0. To prevent the answer from being less accurate than half precision, x 
should be smaller than  

1/ �  

For the result to have any precision at all, |x| must be less than 1/�. Here, � is the machine 
precision, � = AMACH(4). 

BSI0 
This function evaluates the modified Bessel function of the first kind of order zero. 

Function Return Value 
BSI0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 
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FORTRAN 90 Interface 
Generic:  BSI0 (X) 

Specific:  The specific interface names are S_BSI0 and D_BSI0. 

FORTRAN 77 Interface 
Single: BSI0 (X) 

Double: The double precision function name is DBSI0. 

Example 
In this example, I�(4.5) is computed and printed. 

      USE BSI0_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 4.5 
      VALUE = BSI0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSI0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSI0( 4.500) = 17.481 

Description 
The Bessel function I�(x) is defined to be 

� � � �0 0

1 cosh cosI x x d
�

� �
�

� �  

The absolute value of the argument x must not be so large that e|x| overflows. 
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Figure 6-3   Plot of I�(x) and I�(x) 

BSI1 
This function evaluates the modified Bessel function of the first kind of order one. 

Function Return Value 
BSI1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSI1 (X) 

Specific:  The specific interface names are S_BSI1 and D_BSI1. 

FORTRAN 77 Interface 
Single: BSI1 (X) 

Double: The double precision function name is DBSI1. 
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Example 
In this example, I�(4.5) is computed and printed. 

      USE BSI1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 4.5 
      VALUE = BSI1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSI1(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSI1( 4.500) = 15.389 

Comments 
Informational error  
Type  Code 

   2     1  The function underflows because the absolute value of X is too small. 

Description 
The Bessel function I�(x) is defined to be 

� � cosθ
1 0

1 e cosθ θxI x d
�

�

� �  

The argument should not be so close to zero that I�(x) � x/2 underflows, nor so large in absolute 

value that e|x| and, therefore, I�(x) overflows. 

BSK0 
This function evaluates the modified Bessel function of the second kind of order zero. 

Function Return Value 
BSK0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 
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FORTRAN 90 Interface 
Generic:  BSK0 (X) 

Specific:  The specific interface names are S_BSK0 and D_BSK0. 

FORTRAN 77 Interface 
Single: BSK0 (X) 

Double: The double precision function name is DBSK0. 

Example 
In this example, K�(0.5) is computed and printed. 

      USE BSK0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.5 
      VALUE = BSK0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSK0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSK0( 0.500) = 0.924 

Comments 
Informational error 
Type  Code 

   2  1  The function underflows because X is too large. 

Description 
The Bessel function K�(x) is defined to be 

� � � �0 0
cos sinhK x x t dt

�

� �  

The argument must be larger than zero, but not so large that the result, approximately equal to 

� �/ 2 xx e�
�  

underflows. 
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Figure 6-4   Plot of K�(x) and K�(x) 

BSK1 
This function evaluates the modified Bessel function of the second kind of order one. 

Function Return Value 
BSK1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSK1 (X) 

Specific:  The specific interface names are S_BSK1 and D_BSK1. 

FORTRAN 77 Interface 
Single: BSK1 (X) 
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Double: The double precision function name is DBSK1. 

Example 
In this example, K�(0.5) is computed and printed. 

      USE BSK1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.5 
      VALUE = BSK1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSK1(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSK1( 0.500) = 1.656 

Comments 
Informational error  
Type  Code  

   2     1  The function underflows because X is too large. 

Description 
The Bessel function K�(x) is defined to be 

� � � �1 0
sin sinh sinhK x x t t dt

�

� �  

The argument x must be large enough (> max(1/b, s)) that K�(x) does not overflow, and x must 
be small enough that the approximate answer, 

� �/ 2 xx e�
�  

does not underflow. Here, s is the smallest representable positive floating-point number, 
s = AMACH(1) , and b = AMACH(2) is the largest representable floating-point number. 

BSI0E 
This function evaluates the exponentially scaled modified Bessel function of the first kind of order 
zero. 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 105 

 

 

 

Function Return Value 
BSI0E � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSI0E (X) 

Specific:  The specific interface names are S_BSI0E and D_BSI0E. 

FORTRAN 77 Interface 
Single: BSI0E (X) 

Double: The double precision function name is DBSI0E. 

Example 
In this example, BSI0E(4.5) is computed and printed. 

      USE BSI0E_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 4.5 
      VALUE = BSI0E(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSI0E(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSI0E( 4.500) = 0.194 

Description 

Function BSI0E computes e�|x| I�(x). For the definition of the Bessel function I�(x), see BSI0 
(page 98). 
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BSI1E 
This function evaluates the exponentially scaled modified Bessel function of the first kind of order 
one. 

Function Return Value 
BSI1E � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSI1E (X) 

Specific:  The specific interface names are S_BSI1E and D_BSI1E. 

FORTRAN 77 Interface 
Single:  BSI1E (X) 

Double:  The double precision function name is DBSI1E. 

Example 
In this example, BSI1E(4.5) is computed and printed. 

      USE BSI1E_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 4.5 
      VALUE = BSI1E(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSI1E(�, F6.3, �) = �, F6.3) 
      END 

Output 
BSI1E( 4.500) = 0.171 

Comments 
Informational error  
Type  Code  
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   2     1  The function underflows because the absolute value of X is too small. 

Description 

Function BSI1E computes e�|x| I�(x). For the definition of the Bessel function I�(x), see BSI1 
(page 100). The function BSI1E underflows if |x|/2 underflows. 

BSK0E 
This function evaluates the exponentially scaled modified Bessel function of the second kind of 
order zero. 

Function Return Value 
BSK0E � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSK0E (X) 

Specific:  The specific interface names are S_BSK0E and D_BSK0E. 

FORTRAN 77 Interface 
Single: BSK0E (X) 

Double: The double precision function name is DBSK0E. 

Example 
In this example, BSK0E(0.5) is computed and printed. 

      USE BSK0E_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.5 
      VALUE = BSK0E(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSK0E(�, F6.3, �) = �, F6.3) 
      END 



 

 
 

108 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions 

 

 

 

Output 
BSK0E( 0.500) = 1.524 

Description 

Function BSK0E computes exK�(x). For the definition of the Bessel function K�(x), see BSK0 
(page 101). The argument must be greater than zero for the result to be defined. 

BSK1E 
This function evaluates the exponentially scaled modified Bessel function of the second kind of 
order one. 

Function Return Value 
BSK1E � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BSK1E (X) 

Specific:  The specific interface names are S_BSK1E and D_BSK1E. 

FORTRAN 77 Interface 
Single: BSK1E (X) 

Double: The double precision function name is DBSK1E. 

Example 
In this example, BSK1E(0.5) is computed and printed. 

      USE BSK1E_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.5 
      VALUE = BSK1E(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BSK1E(�, F6.3, �) = �, F6.3) 
      END 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 109 

 

 

 

Output 
BSK1E( 0.500) = 2.731 

Description 

Function BSK1E computes exK�(x). For the definition of the Bessel function K�(x), see BSK1 

(page 103). The answer BSK1E = exK�(x) � 1/x overflows if x is too close to zero. 

BSJNS 
Evaluates a sequence of Bessel functions of the first kind with integer order and real or complex 
arguments. 

Required Arguments 
X � Argument for which the sequence of Bessel functions is to be evaluated.   (Input)  

The absolute value of real arguments must be less than 10�. 
The absolute value of complex arguments must be less than 10�. 

N � Number of elements in the sequence.   (Input)  
It must be a positive integer. 

BS � Vector of length N containing the values of the function through the series.   (Output)  
BS(I) contains the value of the Bessel function of order I � 1 at x for I = 1 to N. 

FORTRAN 90 Interface 
Generic:  CALL BSJNS (X, N, BS) 

Specific:  The specific interface names are S_BSJNS, D_BSJNS, C_BSJNS, and   
   Z_BSJNS 

FORTRAN 77 Interface 
Single: CALL BSJNS (X, N, BS) 

Double: The double precision name is DBSJNS. 

Complex: The complex name is CBJNS. 

Double Complex:  The double complex name is DCBJNS. 

Example 
In this example, Jn(10.0), n = 0, �, 9 is computed and printed. 
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      USE BSJNS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
! 
      INTEGER    K, NOUT 
      REAL       BS(N), X 
 !                                 Compute 
      X = 10.0 
      CALL BSJNS (X, N, BS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K-1, X, BS(K) 
   10 CONTINUE 
99999 FORMAT (� J sub �, I2, � (�, F6.3, �) = �, F6.3) 
      END 

Output 
J sub  0 (10.000) = -0.246 
J sub  1 (10.000) =  0.043 
J sub  2 (10.000) =  0.255 
J sub  3 (10.000) =  0.058 
J sub  4 (10.000) = -0.220 
J sub  5 (10.000) = -0.234 
J sub  6 (10.000) = -0.014 
J sub  7 (10.000) =  0.217 
J sub  8 (10.000) =  0.318 
J sub  9 (10.000) =  0.292 

Description 
The complex Bessel function Jn(z) is defined to be 

� � � �
0

1 cos sinnJ z z n d
�

� � �
�

� ��  

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses 
backward recursion with strict error control. 

Additional Example 
In this example, Jn(10 + 10i), n = 0, �, 10 is computed and printed. 

      USE BSJNS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=11) 
! 
      INTEGER    K, NOUT 
      COMPLEX    CBS(N), Z 
!                                 Compute 
      Z = (10.0, 10.0) 
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      CALL BSJNS (Z, N, CBS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K-1, Z, CBS(K) 
   10 CONTINUE 
99999 FORMAT (� J sub �, I2, � ((�, F6.3, �,�, F6.3, & 
           �)) = (�, F9.3, �,�, F9.3, �)�) 
      END 

Output 
J sub  0 ((10.000,10.000)) = (-2314.975,  411.563) 
J sub  1 ((10.000,10.000)) = ( -460.681,-2246.627) 
J sub  2 ((10.000,10.000)) = ( 2044.245, -590.157) 
J sub  3 ((10.000,10.000)) = (  751.498, 1719.746) 
J sub  4 ((10.000,10.000)) = (-1302.871,  880.632) 
J sub  5 ((10.000,10.000)) = ( -920.394, -846.345) 
J sub  6 ((10.000,10.000)) = (  419.501, -843.607) 
J sub  7 ((10.000,10.000)) = (  665.930,   88.480) 
J sub  8 ((10.000,10.000)) = (  108.586,  439.392) 
J sub  9 ((10.000,10.000)) = ( -227.548,  176.165) 
J sub 10 ((10.000,10.000)) = ( -154.831,  -76.050) 

BSINS 
Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or 
complex arguments. 

Required Arguments 
X � Argument for which the sequence of Bessel functions is to be evaluated.   (Input) 

For real argument exp(|x|) must not overflow.  For complex arguments x must be less 
than 10� in absolute value. 

N � Number of elements in the sequence.   (Input) 

BSI � Vector of length N containing the values of the function through the series.   (Output)  
BSI(I) contains the value of the Bessel function of order I � 1 at x for I = 1 to N. 

FORTRAN 90 Interface 
Generic:  CALL BSINS (X, N, BSI) 

Specific:  The specific interface names are S_BSINS, D_BSINS, C_BSINS, and 
  Z_BSINS. 

FORTRAN 77 Interface 
Single: CALL BSINS (X, N, BSI) 
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Double: The double precision name is DBSINS. 

Complex: The complex name is CBINS. 

Double Complex:  The double complex name is DCBINS. 

Example 
In this example, In(10.0), n = 0, �, 10 is computed and printed. 

      USE BSINS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=11) 
!      
      INTEGER    K, NOUT 
      REAL       BSI(N), X 
!                                 Compute 
      X = 10.0 
      CALL BSINS (X, N, BSI) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K-1, X, BSI(K) 
   10 CONTINUE 
99999 FORMAT (� I sub �, I2, � (�, F6.3, �) = �, F9.3) 
      END 

Output 
I sub  0 (10.000) =  2815.716 
I sub  1 (10.000) =  2670.988 
I sub  2 (10.000) =  2281.519 
I sub  3 (10.000) =  1758.381 
I sub  4 (10.000) =  1226.490 
I sub  5 (10.000) =   777.188 
I sub  6 (10.000) =   449.302 
I sub  7 (10.000) =   238.026 
I sub  8 (10.000) =   116.066 
I sub  9 (10.000) =    52.319 
I sub 10 (10.000) =    21.892 

Description 
The complex Bessel function In(z) is defined to be 

� � � �cos

0

1 cosz
nI z e n d

�
�

� �
�

� �  

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses 
backward recursion with strict error control. 
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Additional Example 
In this example, In(10 + 10i), n = 0, �, 10 is computed and printed. 

      USE BSINS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=11) 
!      
      INTEGER    K, NOUT 
      COMPLEX    CBS(N), Z 
!                                 Compute 
      Z = (10.0, 10.0) 
      CALL BSINS (Z, N, CBS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K-1, Z, CBS(K) 
   10 CONTINUE 
99999 FORMAT (� I sub �, I2, � ((�, F6.3, �,�, F6.3, & 
           �)) = (�, F9.3, �,�, F9.3, �)�) 
      END 

Output 
I sub  0 ((10.000,10.000)) = (-2314.975, -411.563) 
I sub  1 ((10.000,10.000)) = (-2246.627, -460.681) 
I sub  2 ((10.000,10.000)) = (-2044.245, -590.157) 
I sub  3 ((10.000,10.000)) = (-1719.746, -751.498) 
I sub  4 ((10.000,10.000)) = (-1302.871, -880.632) 
I sub  5 ((10.000,10.000)) = ( -846.345, -920.394) 
I sub  6 ((10.000,10.000)) = ( -419.501, -843.607) 
I sub  7 ((10.000,10.000)) = (  -88.480, -665.930) 
I sub  8 ((10.000,10.000)) = (  108.586, -439.392) 
I sub  9 ((10.000,10.000)) = (  176.165, -227.548) 
I sub 10 ((10.000,10.000)) = (  154.831,  -76.050) 

BSJS 
Evaluates a sequence of Bessel functions of the first kind with real order and real positive 
arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

It must be at least zero and less than one. 

X � Real argument for which the sequence of Bessel functions is to be evaluated.   (Input)  
It must be nonnegative. 

N � Number of elements in the sequence.   (Input) 
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BS � Vector of length N containing the values of the function through the series.   (Output)  
BS(I) contains the value of the Bessel function of order XNU + I � 1 at x for I = 1 to N. 

FORTRAN 90 Interface 
Generic:  CALL BSJS (XNU, X, N, BS) 

Specific:  The specific interface names are S_BSJS and D_BSJS. 

FORTRAN 77 Interface 
Single: CALL BSJS (XNU, X, N, BS) 

Double: The double precision name is DBSJS. 

Example 
In this example, J�(2.4048256), � = 0, �, 10 is computed and printed. 

      USE BSJS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=11) 
!      
      INTEGER    K, NOUT 
      REAL       BS(N), X, XNU 
!                                 Compute 
      XNU = 0.0 
      X   = 2.4048256 
      CALL BSJS (XNU, X, N, BS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, X, BS(K) 
   10 CONTINUE 
99999 FORMAT (� J sub �, F6.3, � (�, F6.3, �) = �, F10.3) 
      END 

Output 
J sub  0.000 ( 2.405) =      0.000 
J sub  1.000 ( 2.405) =      0.519 
J sub  2.000 ( 2.405) =      0.432 
J sub  3.000 ( 2.405) =      0.199 
J sub  4.000 ( 2.405) =      0.065 
J sub  5.000 ( 2.405) =      0.016 
J sub  6.000 ( 2.405) =      0.003 
J sub  7.000 ( 2.405) =      0.001 
J sub  8.000 ( 2.405) =      0.000 
J sub  9.000 ( 2.405) =      0.000 
J sub 10.000 ( 2.405) =      0.000 
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Comments 
Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The reference is 

CALL B2JS (XNU, X, N, BS, WK) 

The additional argument is 

WK � work array of length 2 � N. 

Description 
The Bessel function J�(x) is defined to be 

� � 2

0

( / 2)( ) cos cos sin
( 1/ 2)
xJ x x d

�
�

�

�
� � �

� �
�

� �
�  

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward 
recursion. 

BSYS 
Evaluates a sequence of Bessel functions of the second kind with real nonnegative order and real 
positive arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

It must be at least zero and less than one. 

X � Real positive argument for which the sequence of Bessel functions is to be evaluated.   
(Input) 

N � Number of elements in the sequence.   (Input) 

BSY � Vector of length N containing the values of the function through the series.   (Output)  
BSY(I) contains the value of the Bessel function of order I � 1 + XNU at x for I = 1  
to N. 

FORTRAN 90 Interface 
Generic:  CALL BSYS (XNU, X, N, BSY) 

Specific:  The specific interface names are S_BSYS and D_BSYS. 

FORTRAN 77 Interface 
Single: CALL BSYS (XNU, X, N, BSY) 
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Double: The double precision name is DBSYS. 

Example 
In this example, Y�������� � � 	 �(0.0078125), � = 1, 2, 3 is computed and printed. 

      USE BSYS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=3) 
!      
      INTEGER    K, NOUT 
      REAL       BSY(N), X, XNU 
!                                 Compute 
      XNU = 0.015625 
      X   = 0.0078125 
      CALL BSYS (XNU, X, N, BSY) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, X, BSY(K) 
   10 CONTINUE 
99999 FORMAT (� Y sub �, F6.3, � (�, F6.3, �) = �, F10.3) 
      END 

Output 
Y sub  0.016 ( 0.008) =     -3.189 
Y sub  1.016 ( 0.008) =    -88.096 
Y sub  2.016 ( 0.008) = -22901.732 

Description 
The Bessel function Y�(x) is defined to be 

� �

0

sinh

0

1( ) sin( sin )

1 cost t x t

Y x x d

e e e dt

�

�

� �

� �� �
�

��
�

�
� �

� �

� �� �� �

�

�
 

The variable � must satisfy 0 � � < 1. If this condition is not met, then BSi is set to �b. In 
addition, x must be in [xm, xM] where xm = 6(16���) and xM = 16�. If x < xm, then  
�b (b = AMACH(2), the largest representable number) is returned; and if x > xM, then zero is 
returned. 

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS 
FUNPACK 1976). It uses a special series expansion for small arguments. For moderate 
arguments, an analytic continuation in the argument based on Taylor series with special rational 
minimax approximations providing starting values is employed. An asymptotic expansion is 
used for large arguments. 
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BSIS 
Evaluates a sequence of modified Bessel functions of the first kind with real order and real 
positive arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

It must be greater than or equal to zero and less than one. 

X � Real argument for which the sequence of Bessel functions is to be evaluated.   (Input) 

N � Number of elements in the sequence.   (Input) 

BSI � Vector of length N containing the values of the function through the series.   (Output)  
BSI(I) contains the value of the Bessel function of order I � 1 + XNU at x for I = 1 to N. 

FORTRAN 90 Interface 
Generic:  CALL BSIS (XNU, X, N, BSI) 

Specific:  The specific interface names are S_BSIS and D_BSIS. 

FORTRAN 77 Interface 
Single: CALL BSIS (XNU, X, N, BSI) 

Double: The double precision name is DBSIS. 

Example 
In this example, I� 	 �(10.0), � = 1, �, 10 is computed and printed. 

      USE BSIS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
!      
      INTEGER    K, NOUT 
      REAL       BSI(N), X, XNU 
!                                 Compute 
      XNU = 0.0 
      X   = 10.0 
      CALL BSIS (XNU, X, N, BSI) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, X, BSI(K) 
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   10 CONTINUE 
99999 FORMAT (� I sub �, F6.3, � (�, F6.3, �) = �, F10.3) 
      END 

Output 
I sub  0.000 (10.000) =   2815.717 
I sub  1.000 (10.000) =   2670.988 
I sub  2.000 (10.000) =   2281.519 
I sub  3.000 (10.000) =   1758.381 
I sub  4.000 (10.000) =   1226.491 
I sub  5.000 (10.000) =    777.188 
I sub  6.000 (10.000) =    449.302 
I sub  7.000 (10.000) =    238.026 
I sub  8.000 (10.000) =    116.066 
I sub  9.000 (10.000) =     52.319 

Description 
The Bessel function I�(x) is defined to be 

cos cosh

0 0

1 sin( )( ) cos( )x x t vtI x e d e dt
�

�

�

��
�� �

� �

�
� �

� �� �  

The input x must be nonnegative and less than or equal to log(b) (b = AMACH(2), the largest 
representable number). The argument � = XNU must satisfy 0 � � � 1.  

Function BSIS is based on a code due to Cody (1983), which uses backward recursion. 

BSIES 
Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with 
nonnegative real order and real positive arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

It must be at least zero and less than one. 

X � Real positive argument for which the sequence of Bessel functions is to be evaluated.   
(Input)  
It must be nonnegative. 

N � Number of elements in the sequence.   (Input) 

BSI � Vector of length N containing the values of the function through the series.   (Output)  
BSI(I) contains the value of the Bessel function of order I � 1 + XNU at x for I = 1 to N 
multiplied by exp(�X). 
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FORTRAN 90 Interface 
Generic:  CALL BSIES (XNU, X, N, BSI) 

Specific:  The specific interface names are S_BSIES and D_BSIES. 

FORTRAN 77 Interface 
Single: CALL BSIES (XNU, X, N, BSI) 

Double: The double precision name is DBSIES. 

Example 
In this example, I� 	 �(10.0), � = 1, �, 10 is computed and printed. 

      USE BSIES_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
!      
      INTEGER    K, NOUT 
      REAL       BSI(N), X, XNU 
!                                 Compute 
      XNU = 0.0 
      X   = 10.0 
      CALL BSIES (XNU, X, N, BSI) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) X, XNU+K-1, X, BSI(K) 
   10 CONTINUE 
99999 FORMAT (� exp(-�, F6.3, �) * I sub �, F6.3, & 
           � (�, F6.3, �) = �, F6.3) 
      END 

Output 
exp(-10.000) * I sub  0.000 (10.000) =  0.128 
exp(-10.000) * I sub  1.000 (10.000) =  0.121 
exp(-10.000) * I sub  2.000 (10.000) =  0.104 
exp(-10.000) * I sub  3.000 (10.000) =  0.080 
exp(-10.000) * I sub  4.000 (10.000) =  0.056 
exp(-10.000) * I sub  5.000 (10.000) =  0.035 
exp(-10.000) * I sub  6.000 (10.000) =  0.020 
exp(-10.000) * I sub  7.000 (10.000) =  0.011 
exp(-10.000) * I sub  8.000 (10.000) =  0.005 
exp(-10.000) * I sub  9.000 (10.000) =  0.002 
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Description 

Function BSIES evaluates e�x I� � k 	 �(x), for k = 1, �, n. For the definition of I�(x), see BSIS 
(page 117). The algorithm is based on a code due to Cody (1983), which uses backward 
recursion. 

BSKS 
Evaluates a sequence of modified Bessel functions of the second kind of fractional order. 

Required Arguments 
XNU � Fractional order of the function.   (Input)  

XNU must be less than one in absolute value. 

X � Argument for which the sequence of Bessel functions is to be evaluated.   (Input) 

NIN � Number of elements in the sequence.   (Input) 

BK � Vector of length NIN containing the values of the function through the series.   
(Output) 

FORTRAN 90 Interface 
Generic:  CALL BSKS (XNU, X, NIN, BK) 

Specific:  The specific interface names are S_BSKS and D_BSKS. 

FORTRAN 77 Interface 
Single: CALL BSKS (XNU, X, NIN, BK) 

Double: The double precision name is DBSKS. 

Example 
In this example, K�	�(10.0), � = 1, �, 10 is computed and printed. 

      USE BSKS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NIN 
      PARAMETER  (NIN=10) 
!      
      INTEGER    K, NOUT 
      REAL       BS(NIN), X, XNU 
!                                 Compute 
      XNU = 0.0 
      X   = 10.0 
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      CALL BSKS (XNU, X, NIN, BS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, NIN 
         WRITE (NOUT,99999) XNU+K-1, X, BS(K) 
   10 CONTINUE 
99999 FORMAT (� K sub �, F6.3, � (�, F6.3, �) = �, E10.3) 
      END 

Output 
K sub  0.000 (10.000) =  0.178E-04 
K sub  1.000 (10.000) =  0.186E-04 
K sub  2.000 (10.000) =  0.215E-04 
K sub  3.000 (10.000) =  0.273E-04 
K sub  4.000 (10.000) =  0.379E-04 
K sub  5.000 (10.000) =  0.575E-04 
K sub  6.000 (10.000) =  0.954E-04 
K sub  7.000 (10.000) =  0.172E-03 
K sub  8.000 (10.000) =  0.336E-03 
K sub  9.000 (10.000) =  0.710E-03 

Comments 
1. If NIN is positive, BK(1) contains the value of the function of order XNU, BK(2) contains 

the value of the function of order XNU + 1, � and BK(NIN) contains the value of the 
function of order XNU + NIN � 1. 

2. If NIN is negative, BK(1) contains the value of the function of order XNU, BK(2) contains 
the value of the function of order XNU � 1, � and BK(ABS(NIN)) contains the value of 
the function of order XNU + NIN + 1. 

Description 
The Bessel function K�(x) is defined to be 

/ 2 2 2( ) ( ) ( )      for arg
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Currently, � is restricted to be less than one in absolute value. A total of |n| values is stored in 
the array BK. For positive n, BK(1) = K�(x), BK(2) = K� � �(x), �, BK(n) = K� � n 	 �(x). For 
negative n, BK(1) = K�(x), BK(2) = K� 	 �(x), �, BK(|n|) = K� � n � �.  

BSKS is based on the work of Cody (1983). 

BSKES 
Evaluates a sequence of exponentially scaled modified Bessel functions of the second kind of 
fractional order. 
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Required Arguments 
XNU � Fractional order of the function.   (Input)  

XNU must be less than 1.0 in absolute value. 

X � Argument for which the sequence of Bessel functions is to be evaluated.   (Input) 

NIN � Number of elements in the sequence.   (Input) 

BKE � Vector of length NIN containing the values of the function through the series.   
(Output) 

FORTRAN 90 Interface 
Generic:  CALL BSKES (XNU, X, NIN, BKE) 

Specific:  The specific interface names are S_BSKES and D_BSKES. 

FORTRAN 77 Interface 
Single: CALL BSKES (XNU, X, NIN, BKE) 

Double: The double precision name is DBSKES. 

Example 
In this example, K� 	 �/�(2.0), � = 1, �, 6 is computed and printed. 

      USE BSKES_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NIN 
      PARAMETER  (NIN=6) 
!      
      INTEGER    K, NOUT 
      REAL       BKE(NIN), X, XNU 
!                                 Compute 
      XNU = 0.5 
      X   = 2.0 
      CALL BSKES (XNU, X, NIN, BKE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, NIN 
         WRITE (NOUT,99999) X, XNU+K-1, X, BKE(K) 
   10 CONTINUE 
99999 FORMAT (� exp(�, F6.3, �) * K sub �, F6.3, & 
           � (�, F6.3, �) = �, F8.3) 
      END 
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Output 
exp( 2.000) * K sub  0.500 ( 2.000) =    0.886 
exp( 2.000) * K sub  1.500 ( 2.000) =    1.329 
exp( 2.000) * K sub  2.500 ( 2.000) =    2.880 
exp( 2.000) * K sub  3.500 ( 2.000) =    8.530 
exp( 2.000) * K sub  4.500 ( 2.000) =   32.735 
exp( 2.000) * K sub  5.500 ( 2.000) =  155.837 

Comments 
1. If NIN is positive, BKE(1) contains EXP(X) times the value of the function of order XNU, 

BKE(2) contains EXP(X) times the value of the function of order XNU + 1, �, and 
BKE(NIN) contains EXP(X) times the value of the function of order XNU + NIN � 1. 

2. If NIN is negative, BKE(1) contains EXP(X) times the value of the function of order XNU, 
BKE(2) contains EXP(X) times the value of the function of order XNU � 1, �, and 
BKE(ABS(NIN)) contains EXP(X) times the value of the function of order  
XNU + NIN + 1. 

Description 

Function BSKES evaluates exK� � k 	 �(x), for k = 1, �, n. For the definition of K�(x), see BSKS 
(page 120).  

Currently, � is restricted to be less than 1 in absolute value. A total of |n| values is stored in the 
array BKE. For n positive, BKE(1) contains exK�(x), BKE(2) contains exK� � �(x), �, and BKE(N) 

contains exK� � n 	 �(x). For n negative, BKE(1) contains exK�(x), BKE(2) contains  

exK� 	 �(x), �, and BKE(|n|) contains exK� � n � �(x). This routine is particularly useful for 
calculating sequences for large x provided n � x. (Overflow becomes a problem if n << x.) n 
must not be zero, and x must not be greater than zero. Moreover, ��� must be less than 1.  
Also, when |n| is large compared with x, �� + n| must not be so large that  
exK��n(x) � ex	
�� + n|)/[2(x/2)|� � n|] overflows.  

BSKES is based on the work of Cody (1983). 

CBJS 
Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

XNU must be greater than �1/2. 

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.   
(Input) 
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N � Number of elements in the sequence.   (Input) 

CBS � Vector of length N containing the values of the function through the series.   (Output) 
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1  
to N. 

FORTRAN 90 Interface 
Generic:  CALL CBJS (XNU, Z, N, CBS) 

Specific:  The specific interface names are S_CBJS and D_CBJS. 

FORTRAN 77 Interface 
Single: CALL CBJS (XNU, Z, N, CBS) 

Double: The double precision name is DCBJS. 

Example 
In this example, J�.
 � � 	 �(1.2 + 0.5i), � = 1, �, 4 is computed and printed. 

      USE CBJS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
!      
      INTEGER    K, NOUT 
      REAL       XNU 
      COMPLEX    CBS(N), Z 
!                                 Compute 
      XNU = 0.3 
      Z   = (1.2, 0.5) 
      CALL CBJS (XNU, Z, N, CBS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, Z, CBS(K) 
   10 CONTINUE 
99999 FORMAT (� J sub �, F6.3, � ((�, F6.3, �,�, F6.3, & 
           �)) = (�, F9.3, �,�, F9.3, �)�) 
      END 

Output 
J sub  0.300 (( 1.200, 0.500)) = (    0.774,   -0.107) 
J sub  1.300 (( 1.200, 0.500)) = (    0.400,    0.159) 
J sub  2.300 (( 1.200, 0.500)) = (    0.087,    0.092) 
J sub  3.300 (( 1.200, 0.500)) = (    0.008,    0.024) 
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Comments 
Informational errors  
Type  Code  

   3     1  One of the continued fractions failed. 

   4     2  Only the first several entries in CBS are valid. 

Description 
The Bessel function J�(z) is defined to be 

� � sinh

0 0

1 sin( )cos( sin )      

for arg
2

z t vtJ z z d e dt

z

�

�

��
� �� �

� �

�

�
�

� � �

�

� �
 

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).  

This code computes J�(z) from the modified Bessel function I�(z) (see page 129), using the 

following relation, with � = ei	
�: 

3 3

( / ) for / 2 arg
( )

( ) for arg / 2
v

v
v

I z z
Y z

I z z

� � � �

� � � �

� � ���
� �

� � ���
 

CBYS 
Evaluates a sequence of Bessel functions of the second kind with real order and complex 
arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

XNU must be greater than �1/2. 

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.   
(Input) 

N � Number of elements in the sequence.   (Input) 

CBS � Vector of length N containing the values of the function through the series.   (Output)  
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1  
to N. 

FORTRAN 90 Interface 
Generic:  CALL CBYS (XNU, Z, N, CBS) 
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Specific:  The specific interface names are S_CBYS and D_CBYS. 

FORTRAN 77 Interface 
Single: CALL CBYS (XNU, Z, N, CBS) 

Double: The double precision name is DCBYS. 

Example 
In this example, Y�0.3 + n � 1(1.2 + 0.5i), � = 1, �, 4 is computed and printed. 

      USE CBYS_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
!      
      INTEGER    K, NOUT 
      REAL       XNU 
      COMPLEX    CBS(N), Z 
!                                 Compute 
      XNU = 0.3 
      Z   = (1.2, 0.5) 
      CALL CBYS (XNU, Z, N, CBS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, Z, CBS(K) 
   10 CONTINUE 
99999 FORMAT (� Y sub �, F6.3, � ((�, F6.3, �,�, F6.3, & 
           �)) = (�, F9.3, �,�, F9.3, �)�) 
      END 

Output 
Y sub  0.300 (( 1.200, 0.500)) = (   -0.013,    0.380) 
Y sub  1.300 (( 1.200, 0.500)) = (   -0.716,    0.338) 
Y sub  2.300 (( 1.200, 0.500)) = (   -1.048,    0.795) 
Y sub  3.300 (( 1.200, 0.500)) = (   -1.625,    3.684) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2YS/DC2Y.  

The reference is: 

CALL C2YS (XNU, Z, N, CBS, FK) 

The additional argument is: 

FK � complex work vector of length N. 
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2. Informational errors  
Type            Code  

   3     1  One of the continued fractions failed. 
   4     2  Only the first several entries in CBS are valid. 

Description 
The Bessel function Y�(z) is defined to be 

0

sinh

0

1( ) sin( sin )

1 cos( )

for arg
2

v

vt vt z t

Y z z v d

e e v e dt

z
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�
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�  

This code is based on the code BESSEC of Barnett (1981) and Thompson and Barnett (1987).  

This code computes Y�(z) from the modified Bessel functions I�(z) and K�(z) (see CBIS, page 
127, and CBKS, page 129), using the following relation: 

/ 2 ( 1) / 2 / 22( ) ( ) ( )     for arg / 2i v i v i
vY ze e I z e K z z� � �

� �
� �

�

� �

� � � � �  

CBIS 
Evaluates a sequence of modified Bessel functions of the first kind with real order and complex 
arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

XNU must be greater than �1/2. 

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.   
(Input) 

N � Number of elements in the sequence.   (Input) 

CBS � Vector of length N containing the values of the function through the series.   (Output)  
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1  
to N. 

FORTRAN 90 Interface 
Generic:  CALL CBIS (XNU, Z, N, CBS) 



 

 
 

128 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions 

 

 

 

Specific:  The specific interface names are S_CBIS and D_CBIS. 

FORTRAN 77 Interface 
Single: CALL CBIS (XNU, Z, N, CBS) 

Double: The double precision name is DCBIS. 

Example 
In this example, I�.
 � � 	 �(1.2 + 0.5i), � = 1, �, 4 is computed and printed. 

      USE CBIS_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
!      
      INTEGER    K, NOUT 
      REAL       XNU 
      COMPLEX    CBS(N), Z 
!                                 Compute 
      XNU = 0.3 
      Z   = (1.2, 0.5) 
      CALL CBIS (XNU, Z, N, CBS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, Z, CBS(K) 
   10 CONTINUE 
99999 FORMAT (� I sub �, F6.3, � ((�, F6.3, �,�, F6.3, & 
              �)) = (�, F9.3, �,�, F9.3, �)�) 
      END 

Output 
I sub  0.300 (( 1.200, 0.500)) = (    1.163,    0.396) 
I sub  1.300 (( 1.200, 0.500)) = (    0.447,    0.332) 
I sub  2.300 (( 1.200, 0.500)) = (    0.082,    0.127) 
I sub  3.300 (( 1.200, 0.500)) = (    0.006,    0.029) 

Comments 
Informational errors 
Type Code 

   3    1 One of the continued fractions failed. 

   4    2  Only the first several entries in CBS are valid. 

Description 
The modified Bessel function I�(z) is defined to be 
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where the Bessel function J�(z) is defined in BSJS (page 113).  

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).  

For large arguments, z, Temme�s (1975) algorithm is used to find I�(z). The I�(z) values are 
recurred upward (if this is stable). This involves evaluating a continued fraction. If this 
evaluation fails to converge, the answer may not be accurate. For moderate and small 
arguments, Miller�s method is used. 

CBKS 
Evaluates a sequence of modified Bessel functions of the second kind with real order and complex 
arguments. 

Required Arguments 
XNU � Real argument which is the lowest order desired.   (Input)  

XNU must be greater than �1/2. 

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.   
(Input) 

N � Number of elements in the sequence.   (Input) 

CBS � Vector of length N containing the values of the function through the series.   (Output)  
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1  
to N. 

FORTRAN 90 Interface 
Generic:  CALL CBKS (XNU, Z, N, CBS) 

Specific:  The specific interface names are S_CBKS and D_CBKS. 

FORTRAN 77 Interface 
Single: CALL CBKS (XNU, Z, N, CBS) 

Double: The double precision name is DCBKS. 

Example 
In this example, K�.
 � v 	 �(1.2 + 0.5i), � = 1, �, 4 is computed and printed. 
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      USE UMACH_INT 
      USE CBKS_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
!      
      INTEGER    K, NOUT 
      REAL       XNU 
      COMPLEX    CBS(N), Z 
!                                 Compute 
      XNU = 0.3 
      Z   = (1.2, 0.5) 
      CALL CBKS (XNU, Z, N, CBS) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) XNU+K-1, Z, CBS(K) 
   10 CONTINUE 
99999 FORMAT (� K sub �, F6.3, � ((�, F6.3, �,�, F6.3, & 
           �)) = (�, F9.3, �,�, F9.3, �)�) 
      END 

Output 

K sub  0.300 (( 1.200, 0.500)) = (    0.246,   -0.200) 
K sub  1.300 (( 1.200, 0.500)) = (    0.336,   -0.362) 
K sub  2.300 (( 1.200, 0.500)) = (    0.587,   -1.126) 
K sub  3.300 (( 1.200, 0.500)) = (    0.719,   -4.839) 

Comments 
Workspace may be explicitly provided, if desired, by use of C2KS/DC2KS. The reference is 

CALL C2KS (XNU, Z, N, CBS, FK) 

The additional argument is 

FK � Complex work vector of length N. 

 Informational errors  
Type     Code  

   3     1  One of the continued fractions failed. 
   4     2  Only the first several entries in CBS are valid. 

Description 
The Bessel function K�(z) is defined to be 

/ 2 / 2 / 2( ) ( ) ( ) for arg
2 2

v i i i
v v vK z e iJ ze Y ze z� � �

� �

�� �� � � � �� �  

where the Bessel function J�(z) is defined in CBJS (page 123) and Y�(z) is defined in CBYS 
(page 125).  
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This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).  

For moderate or large arguments, z, Temme�s (1975) algorithm is used to find K�(z). This 
involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not 
be accurate. For small z, a Neumann series is used to compute K�(z). Upward recurrence of the 
K�(z) is always stable. 
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Chapter 7: Kelvin Functions 

Routines 
Evaluates ber�(x) ....................................................................BER0 135 
Evaluates bei�(x)...................................................................... BEI0 136 
Evaluates ker�(x).................................................................. AKER0 137 
Evaluates kei�(x) ....................................................................AKEI0 138 
Evaluates ber��(x) ................................................................ BERP0 139 
Evaluates bei�(x)....................................................................BEIP0 140 
Evaluates ker��(x)...............................................................AKERP0 141 
Evaluates kei��(x) ................................................................ AKEIP0 142 
Evaluates ber�(x) ....................................................................BER1 144 
Evaluates bei�(x)...................................................................... BEI1 145 
Evaluates ker�(x).................................................................. AKER1 146 
Evaluates kei�(x) ....................................................................AKEI1 147 

Usage Notes 
The notation used in this chapter follows that of Abramowitz and Stegun (1964). The Kelvin 
functions are related to the Bessel functions by the following relations. 

3 / 4ber bei ( )i
v v vx i x J xe �

� �  

/ 2 / 4ker kei ( )i i
v v vx i x e K xe�� ��

� �  

The derivatives of the Kelvin functions are related to the values of the Kelvin functions by the 
following:  

0 1 12ber ber beix x x� � �  

0 1 12bei ber beix x x� � � �  

0 1 12ker ker keix x x� � �  

0 1 12kei ker keix x x� � � �  
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Plots of bern(x), bein(x), kern(x) and kein(x) for n = 0, 1 follow: 

 
Figure 7-1   Plot of bern(x) and bein(x) 

 
Figure 7-2   Plot of kern(x) and kein(x) 
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BER0 
This function evaluates the Kelvin function of the first kind, ber, of order zero. 

Function Return Value 
BER0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

ABS(X) must be less than 119. 

FORTRAN 90 Interface 
Generic:  BER0 (X) 

Specific:  The specific interface names are S_BER0 and D_BER0. 

FORTRAN 77 Interface 
Single: BER0 (X) 

Double: The double precision name is DBER0. 

Example 
In this example, ber�(0.4) is computed and printed. 

      USE BER0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = BER0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BER0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BER0( 0.400) = 1.000 
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Description 

The Kelvin function ber�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in 
BSJ0 (page 92). Function BER0 is based on the work of Burgoyne (1963). 

BEI0 
This function evaluates the Kelvin function of the first kind, bei, of order zero. 

Function Return Value 
BEI0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

ABS(X) must be less than 119. 

FORTRAN 90 Interface 
Generic:  BEI0 (X) 

Specific:  The specific interface names are S_BEI0 and D_BEI0. 

FORTRAN 77 Interface 
Single: BEI0 (X) 

Double: The double precision name is DBEI0. 

Example 
In this example, bei�(0.4) is computed and printed. 

      USE BEI0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = BEI0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BEI0(�, F6.3, �) = �, F6.3) 
      END 
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Output 
BEI0( 0.400) = 0.040 

Description 

The Kelvin function bei�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in 
BSJ0 (page 92). Function BEI0 is based on the work of Burgoyne (1963).  

In BEI0, x must be less than 119. 

AKER0 
This function evaluates the Kelvin function of the second kind, ker, of order zero. 

Function Return Value 
AKER0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

It must be nonnegative. 

FORTRAN 90 Interface 
Generic:  AKER0(X) 

Specific:  The specific interface names are S_AKER0 and D_AKER0. 

FORTRAN 77 Interface 
Single: AKER0(X) 

Double: The double precision name is DKER0. 

Example 
In this example, ker�(0.4) is computed and printed. 

      USE AKER0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = AKER0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AKER0(�, F6.3, �) = �, F6.3) 
      END 

Output 
AKER0( 0.400) = 1.063 

Description 

The modified Kelvin function ker�(x) is defined to be �K�(xe�i��). The Bessel function K�(x) is 
defined in BSK0 (page 101). Function AKER0 is based on the work of Burgoyne (1963). If x < 0, 
then NaN (not a number) is returned. If x � 119, then zero is returned. 

AKEI0 
This function evaluates the Kelvin function of the second kind, kei, of order zero. 

Function Return Value 
AKEI0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

It must be nonnegative and less than 119. 

FORTRAN 90 Interface 
Generic:  AKEI0(X) 

Specific:  The specific interface names are S_AKEI0 and D_AKEI0. 

FORTRAN 77 Interface 
Single: AKEI0(X) 

Double: The double precision name is DKEI0. 

Example 
In this example, kei�(0.4) is computed and printed. 

      USE AKEI0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
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      VALUE = AKEI0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AKEI0(�, F6.3, �) = �, F6.3) 
      END 

Output 
AKEI0( 0.400) = -0.704 

Description 

The modified Kelvin function kei�(x) is defined to be �K�(xe�i��). The Bessel function K�(x) is 
defined in BSK0 (page 101). Function AKEI0 is based on the work of Burgoyne (1963).  

In AKEI0, x must satisfy 0 � x < 119. If x < 0, then NaN (not a number) is returned. If x � 119, 
then zero is returned. 

BERP0 
This function evaluates the derivative of the Kelvin function of the first kind, ber, of order zero. 

Function Return Value 
BERP0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BERP0 (X) 

Specific:  The specific interface names are S_BERP0 and D_BERP0. 

FORTRAN 77 Interface 
Single: BERP0 (X) 

Double: The double precision name is DBERP0. 

Example 
In this example, ber�0(0.6) is computed and printed. 

      USE BERP0_INT 
      USE UMACH_INT 
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!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.6 
      VALUE = BERP0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BERP0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BERP0( 0.600) = -0.013 

Description 
The function ber��(x) is defined to be 

� �0 berd x
dx

 

where ber�(x) is a Kelvin function, see BER0 (page 135). Function BERP0 is based on the work 
of Burgoyne (1963).  

If �x� > 119, then NaN (not a number) is returned. 

BEIP0 
This function evaluates the derivative of the Kelvin function of the first kind, bei, of order zero. 

Function Return Value 
BEIP0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BEIP0 (X) 

Specific:  The specific interface names are S_BEIP0 and D_BEIP0. 

FORTRAN 77 Interface 
Single: BEIP0 (X) 

Double: The double precision name is DBEIP0. 
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Example 
In this example, bei��(0.6) is computed and printed. 

      USE BEIP0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.6 
      VALUE = BEIP0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BEIP0(�, F6.3, �) = �, F6.3) 
      END 

Output 
BEIP0( 0.600) = 0.300 

Description 
The function bei��(x) is defined to be 

� �0 beid x
dx

 

where bei�(x) is a Kelvin function, see BEI0 (page 136). Function BEIP0 is based on the work 
of Burgoyne (1963).  

If |x| > 119, then NaN (not a number) is returned. 

AKERP0 
This function evaluates the derivative of the Kelvin function of the second kind, ker, of order zero. 

Function Return Value 
AKERP0 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

It must be nonnegative. 

FORTRAN 90 Interface 
Generic:  AKERP0 (X) 
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Specific:  The specific interface names are S_AKERP0 and D_AKERP0. 

FORTRAN 77 Interface 
Single: AKERP0 (X) 

Double: The double precision name is DKERP0. 

Example 
In this example, ker��(0.6) is computed and printed. 

      USE AKERP0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.6 
      VALUE = AKERP0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AKERP0(�, F6.3, �) = �, F6.3) 
      END 

Output 
AKERP0( 0.600) = -1.457 

Description 
The function ker��(x) is defined to be 

� �0 kerd x
dx

 

where ker�(x) is a Kelvin function, see AKER0 (page 137). Function AKERP0 is based on the 
work of Burgoyne (1963). If x < 0, then NaN (not a number) is returned. If x > 119, then zero is 
returned. 

AKEIP0 
This function evaluates the Kelvin function of the second kind, kei, of order zero. 

Function Return Value 
AKEIP0 � Function value.   (Output) 
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Required Arguments 
X � Argument for which the function value is desired.   (Input)  

It must be nonnegative. 

FORTRAN 90 Interface 
Generic:  AKEIP0 (X) 

Specific:  The specific interface names are S_AKEIP0 and D_AKEIP0. 

FORTRAN 77 Interface 
Single: AKEIP0 (X) 

Double: The double precision name is DKEIP0. 

Example 
In this example, kei��(0.6) is computed and printed. 

      USE AKEIP0_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.6 
      VALUE = AKEIP0(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AKEIP0(�, F6.3, �) = �, F6.3) 
      END 

Output 
AKEIP0( 0.600) = 0.348 

Description 
The function kei��(x) is defined to be 

� �0 keid x
dx

 

where kei�(x) is a Kelvin function, see AKEIP0 (page 142). Function AKEIP0 is based on the 
work of Burgoyne (1963).  

If x < 0, then NaN (not a number) is returned. If x > 119, then zero is returned. 
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BER1 
This function evaluates the Kelvin function of the first kind, ber, of order one. 

Function Return Value 
BER1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BER1 (X) 

Specific:  The specific interface names are S_BER1 and D_BER1. 

FORTRAN 77 Interface 
Single: BER1 (X) 

Double: The double precision name is DBER1. 

Example 
In this example, ber�(0.4) is computed and printed. 

      USE BER1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = BER1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BER1(�, F6.3, �) = �, F6.3) 
      END 

Output 
BER1( 0.400) = -0.144 

Description 

The Kelvin function ber�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in 
BSJ1 (page 94). Function BER1 is based on the work of Burgoyne (1963).  
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If |x| > 119, then NaN (not a number) is returned. 

BEI1 
This function evaluates the Kelvin function of the first kind, bei, of order one. 

Function Return Value 
BEI1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BEI1 (X) 

Specific:  The specific interface names are S_BEI1 and D_BEI1. 

FORTRAN 77 Interface 
Single: BEI1 (X) 

Double: The double precision name is DBEI1. 

Example 
In this example, bei�(0.4) is computed and printed. 

      USE BEI1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = BEI1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BEI1(�, F6.3, �) = �, F6.3) 
      END 

Output 
BEI1( 0.400) = 0.139 
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Description 

The Kelvin function bei�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in 
BSJ1 (page 94). Function BEI1 is based on the work of Burgoyne (1963).  

If |x| > 119, then NaN (not a number) is returned. 

AKER1 
This function evaluates the Kelvin function of the second kind, ker, of order one. 

Function Return Value 
AKER1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

It must be nonnegative. 

FORTRAN 90 Interface 
Generic:  AKER1 (X) 

Specific:  The specific interface names are S_AKER1 and D_AKER1. 

FORTRAN 77 Interface 
Single: AKER1 (X) 

Double: The double precision name is DKER1. 

Example 
In this example, ker�(0.4) is computed and printed. 

      USE AKER1_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = AKER1(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AKER1(�, F6.3, �) = �, F6.3) 
      END 
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Output 
AKER1( 0.400) = -1.882 

Description 

The modified Kelvin function ker�(x) is defined to be e��i���K�(xe�i��). The Bessel function 
K�(x) is defined in BSK1 (page 103). Function AKER1 is based on the work of Burgoyne (1963).  

If x < 0, then NaN (not a number) is returned. If x � 119, then zero is returned. 

AKEI1 
This function evaluates the Kelvin function of the second kind, kei, of order one. 

Function Return Value 
AKEI1 � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

It must be nonnegative. 

FORTRAN 90 Interface 
Generic:  AKEI1 (X) 

Specific:  The specific interface names are S_AKEI1 and D_AKEI1. 

FORTRAN 77 Interface 
Single: AKEI1 (X) 

Double: The double precision name is DKEI1. 

Example 
In this example, kei�(0.4) is computed and printed. 

      USE UMACH_INT 
      USE AKEI1_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.4 
      VALUE = AKEI1(X) 
!                                 Print the results 
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      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AKEI1(�, F6.3, �) = �, F6.3) 
      END 

Output 

AKEI1( 0.400) = -1.444 

Description 

The modified Kelvin function kei�(x) is defined to be e��i���K�(xe�i��). The Bessel function 
K�(x) is defined in BSK1 (page 103). Function AKER1 is based on the work of Burgoyne (1963).  

If x < 0, then NaN (not a number) is returned. If x � 119, then zero is returned. 
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Chapter 8: Airy Functions 

Routines 
Evaluates Ai(x)..............................................................................AI 149 
Evaluates Bi(x)..............................................................................BI 150 
Evaluates Ai�(x)..........................................................................AID 152 
Evaluates Bi�(x)..........................................................................BID 153 
Evaluates exponentially scaled Ai(x) ......................................... AIE 154 
Evaluates exponentially scaled Bi(x) ......................................... BIE 155 
Evaluates exponentially scaled Ai�(x) ......................................AIDE 157 
Evaluates exponentially scaled Bi�(x) ......................................BIDE 158 

AI 
This function evaluates the Airy function. 

Function Return Value 
AI � Function value.   (Output) 

Required Arguments 
X � Argument for which the Airy function is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  AI (X) 

Specific:  The specific interface names are S_AI and D_AI. 

FORTRAN 77 Interface 
Single: AI (X) 

Double: The double precision name is DAI. 
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Example 
In this example, Ai(�4.9) is computed and printed. 

      USE AI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = -4.9 
      VALUE = AI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AI(�, F6.3, �) = �, F6.3) 
      END 

Output 
AI(-4.900) = 0.375 

Comments 
Informational error 
Type Code 

2    1 The function underflows because X is greater than XMAX, where  
                             XMAX = (�3/2 ln(AMACH(1)))���. 

Description 
The Airy function Ai(x) is defined to be 

� � 3 3 / 2
1/ 320

1 1 2Ai cos
3 33

xx xt t dt K x
� �

� � � � �
� � �� � � �

� � � �
�  

The Bessel function K�(x) is defined in BSKS (page 120).  

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, the answer will be less 
accurate than half precision. Here, � = AMACH(4) is the machine precision. Finally, x should be 
less than x� so the answer does not underflow. Very approximately, x� = {�1.5 ln s}���, 
where s = AMACH(1), the smallest representable positive number. If underflows are a problem 
for large x, then the exponentially scaled routine AIE (page 154) should be used. 

BI 
This function evaluates the Airy function of the second kind. 

Function Return Value 
BI � Function value.   (Output) 
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Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BI (X) 

Specific:  The specific interface names are S_BI and D_BI. 

FORTRAN 77 Interface 
Single: BI (X) 

Double: The double precision name is DBI. 

Example 
In this example, Bi(�4.9) is computed and printed. 

      USE BI_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = -4.9 
      VALUE = BI(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BI(�, F6.3, �) = �, F6.3) 
      END 

Output 
BI(-4.900) = -0.058 

Description 
The Airy function of the second kind Bi(x) is defined to be 

� � 3 3

0 0

1 1 1 1Bi exp sin
3 3

x xt t dt xt t dt
� �

� �� � � �
� � � �� � � �

� 	 � 	
� �  

It can also be expressed in terms of modified Bessel functions of the first kind, I�(x), and Bessel 
functions of the first kind, J�(x) (see BSIS, page 117, and BSJS, page 113): 

� � 3 / 2 3 / 2
1/ 3 1/ 3

2 2Bi for 0
3 3 3
xx I x I x x

�

� �� � � �
� � �� 	 � 	
 �

�  � � �
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and 

� �
3 / 2 3 / 2

1/ 3 1/ 3
2 2Bi for 0
3 33

xx J x J x x
�

	 
� � � �
� � � �� � � � �

� � � �� �
 

Let � = AMACH(4), the machine precision. If x < �1.31�����, then the answer will have no 
precision. If x < �1.31�����, the answer will be less accurate than half precision. In addition, x 
should not be so large that exp[(2/3)x���] overflows. If overflows are a problem, consider using 
the exponentially scaled form of the Airy function of the second kind, BIE (page 155), instead. 

AID 
This function evaluates the derivative of the Airy function. 

Function Return Value 
AID � Function value.   (Output) 

Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  AID (X) 

Specific:  The specific interface names are S_AID and D_AID. 

FORTRAN 77 Interface 
Single: AID (X) 

Double: The double precision name is DAID. 

Example 
In this example, Ai�(�4.9) is computed and printed. 

      USE AID_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = -4.9 
      VALUE = AID(X) 
 
 
 
 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 153 

 

 

 

!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AID(�, F6.3, �) = �, F6.3) 
      END 

Output 
AID(-4.900) = 0.147 

Comments 
Informational error  
Type Code 

   2    1 The function underflows because X is greater than XMAX,  

where XMAX = �3/2 ln(AMACH(1)). 

Description 
The function Ai�(x) is defined to be the derivative of the Airy function, Ai(x) (see AI, page 149). 

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, the answer will be less 
accurate than half precision. Here, � = AMACH(4) is the machine precision. Finally, x should be 
less than x� so that the answer does not underflow. Very approximately, x� = {�1.5 ln s}, 
where s = AMACH(1), the smallest representable positive number. If underflows are a problem for 
large x, then the exponentially scaled routine AIDE (page 157) should be used. 

BID 
This function evaluates the derivative of the Airy function of the second kind. 

Function Return Value 
BID � Function value.   (Output) 

Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BID (X) 

Specific:  The specific interface names are S_BID and D_BID. 

FORTRAN 77 Interface 
Single: BID (X) 
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Double: The double precision name is DBID. 

Example 
In this example, Bi�(�4.9) is computed and printed. 

      USE BID_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = -4.9 
      VALUE = BID(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BID(�, F6.3, �) = �, F6.3) 
      END 

Output 
BID(-4.900) = 0.827 

Description 
The function Bi�(x) is defined to be the derivative of the Airy function of the second kind, Bi(x) 
(see BI, page 150). 

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, the answer will be less 
accurate than half precision. In addition, x should not be so large that exp[(2/3)x���] overflows. If 
overflows are a problem, consider using BIDE (page 158) instead. Here, � = AMACH(4) is the 
machine precision. 

AIE 
This function evaluates the exponentially scaled Airy function. 

Function Return Value 
AIE � Function value.   (Output)  

The Airy function for negative arguments and the exponentially scaled Airy function,  
e 	Ai(X), for positive arguments where 

2 3/2
3 X� �  

Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 
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FORTRAN 90 Interface 
Generic:  AIE (X) 

Specific:  The specific interface names are S_AIE and D_AIE. 

FORTRAN 77 Interface 
Single: AIE (X) 

Double: The double precision name is DAIE. 

Example 
In this example, AIE(0.49) is computed and printed. 

      USE AIE_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.49 
      VALUE = AIE(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AIE(�, F6.3, �) = �, F6.3) 
      END 

Output 
AIE( 0.490) = 0.294 

Description 
The exponentially scaled Airy function is defined to be 

� �
� �

� � � �
3/ 22 / 3

Ai if 0

Ai if 0x

x x
x

e x x

� ��
� �

���

AIE  

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will 
be less accurate than half precision. Here, � = AMACH(4) is the machine precision. 

BIE 
This function evaluates the exponentially scaled Airy function of the second kind. 
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Function Return Value 
BIE � Function value.   (Output)  

The Airy function of the second kind for negative arguments and the exponentially 
scaled Airy function of the second kind, e�Bi(X), for positive arguments where 

3/ 22
3 X� � �  

Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BIE (X) 

Specific:  The specific interface names are S_BIE and D_BIE. 

FORTRAN 77 Interface 
Single: BIE (X) 

Double: The double precision name is DBIE. 

Example 
In this example, BIE(0.49) is computed and printed. 

      USE BIE_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.49 
      VALUE = BIE(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BIE(�, F6.3, �) = �, F6.3) 
      END 

Output 
BIE( 0.490) = 0.675 

Description 
The exponentially scaled Airy function of the second kind is defined to be 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 157 

 

 

 

� �
� �
� � � �

3/ 22 / 3

if 0Bi

Bi if 0
x

xx
x

e x x
�

� ��
� �
� ��

BIE  

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will 
be less accurate than half precision. Here, � = AMACH(4) is the machine precision. 

AIDE 
This function evaluates the exponentially scaled derivative of the Airy function. 

Function Return Value 
AIDE � Function value.   (Output)  

The derivative of the Airy function for negative arguments and the exponentially scaled 
derivative of the Airy function, e�Ai�(X), for positive arguments where 

3/22
3 X� ��  

Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  AIDE (X) 

Specific:  The specific interface names are S_AIDE and D_AIDE. 

FORTRAN 77 Interface 
Single: AIDE (X) 

Double: The double precision name is DAIDE. 

Example 
In this example, AIDE(0.49) is computed and printed. 

      USE AIDE_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.49 
      VALUE = AIDE(X) 
!                                 Print the results 
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      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� AIDE(�, F6.3, �) = �, F6.3) 
      END 

Output 
AIDE( 0.490) = -0.284 

Description 
The exponentially scaled derivative of the Airy function is defined to be 

� �
� �

� � � �
3/ 22 / 3

Ai if 0

Ai if 0x

x x
x

e x x

� � ��
� �

� ���

AIDE  

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will 
be less accurate than half precision. Here, � = AMACH(4) is the machine precision. 

BIDE 
This function evaluates the exponentially scaled derivative of the Airy function of the second kind. 

Function Return Value 
BIDE � Function value.   (Output)  

The derivative of the Airy function of the second kind for negative arguments and the 
exponentially scaled derivative of the Airy function of the second kind, e�Bi�(X), for 
positive arguments where 

2 3 / 2
3 X� ��  

Required Arguments 
X � Argument for which the Airy function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  BIDE (X) 

Specific:  The specific interface names are S_BIDE and D_BIDE. 

FORTRAN 77 Interface 
Single: BIDE (X) 

Double: The double precision name is DBIDE. 
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Example 
In this example, BIDE(0.49) is computed and printed. 

      USE BIDE_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.49 
      VALUE = BIDE(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� BIDE(�, F6.3, �) = �, F6.3) 
      END 

Output 
BIDE( 0.490) = 0.430 

Description 
The exponentially scaled derivative of the Airy function of the second kind is defined to be 

� �
� �

� � � �
3/ 22 / 3

Bi if 0

Bi if 0x

x x
x

e x x�

� � ��
� �

� ���

BIDE  

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will 
be less accurate than half precision. Here, � = AMACH(4) is the machine precision. 
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Chapter 9: Elliptic Integrals 

Routines 
Evaluates the complete elliptic integral of the first kind, K(x) ... ELK 163 
Evaluates the complete elliptic integral of the second kind,  
E(x) ........................................................................................... ELE 165 
Evaluates Carlson�s elliptic integral of the first kind,  
RF(x, y, z) ................................................................................ELRF 166 
Evaluates Carlson�s elliptic integral of the second kind,  
RD(x, y, z)............................................................................... ELRD 167 
Evaluates Carlson�s elliptic integral of the third kind,  
RJ(x, y, z) ................................................................................ ELRJ 169 
Evaluates a special case of Carlson�s elliptic integral,  
RC(x, y, z)............................................................................... ELRC 170 

Usage Notes 
The notation used in this chapter follows that of Abramowitz and Stegun (1964) and Carlson 
(1979).  

The complete elliptic integral of the first kind is  

� � � �
1/ 2/ 2 2

0
1 sinK m m d

�

� �
�

� ��  

and the complete elliptic integral of the second kind is 

� � � �
1/ 2/ 2 2

0
1 sinE m m d

�

� �� ��  

Instead of the parameter m, the modular angle 
 is sometimes used with m = sin�
. Also used is 
the modulus k with k� = m. 

� � � �

� � � �

/ 2 2 2 1/ 2

0

2 2 2

1 sin

10,1 , 1 0, 1 , 1
3F D

E k k d

R k k R k

�

� �� �

� � � �

�
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Carlson Elliptic Integrals 
The Carlson elliptic integrals are defined by Carlson (1979) as follows: 
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The standard Legendre elliptic integrals can be written in terms of the Carlson functions as follows 
(these relations are from Carlson (1979)): 
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The function RC(x, y) is related to inverse trigonometric and inverse hyperbolic functions. 
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ELK 
This function evaluates the complete elliptic integral of the kind K(x). 

Function Return Value 
ELK � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

X must be greater than or equal to 0 and less than 1. 

FORTRAN 90 Interface 
Generic:  ELK (X) 

Specific:  The specific interface names are S_ELK and D_ELK. 

FORTRAN 77 Interface 
Single: ELK (X) 

Double: The double precision name is DELK. 

Example 
In this example, K(0) is computed and printed. 
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      USE ELK_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.0 
      VALUE = ELK(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ELK(�, F6.3, �) = �, F6.3) 
      END 

Output 
ELK( 0.000) = 1.571 

Description 
The complete elliptic integral of the first kind is defined to be 
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The argument x must satisfy 0 � x < 1; otherwise, ELK is set to b = AMACH(2), the largest 
representable floating-point number. 

The function K(x) is computed using the routine ELRF (page 166) and the relation  
K(x) = RF(0, 1 � x, 1). 

 
Figure 9-1   Plot of K(x) and E(x) 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 165 

 

 

 

ELE 
This function evaluates the complete elliptic integral of the second kind E(x). 

Function Return Value 
ELE � Function value.   (Output) 

Required Arguments 
X � Argument for which the function value is desired.   (Input)  

X must be greater than or equal to 0 and less than or equal to 1. 

FORTRAN 90 Interface 
Generic:  ELE (X) 

Specific:  The specific interface names are S_ELE and D_ELE. 

FORTRAN 77 Interface 
Single: ELE (X) 

Double: The double precision name is DELE. 

Example 
In this example, E(0.33) is computed and printed. 

      USE ELE_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.33 
      VALUE = ELE(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (� ELE(�, F6.3, �) = �, F6.3) 
      END 

Output 
ELE( 0.330) = 1.432 

Description 
The complete elliptic integral of the second kind is defined to be 
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The argument x must satisfy 0 � x < 1; otherwise, ELE is set to b = AMACH(2), the largest 
representable floating-point number.  

The function E(x) is computed using the routines ELRF, page 166, and ELRD, page 167. The 
computation is done using the relation 

� � � � � �0, 1 , 1 0, 1 , 1
3F D
xE x R x R x� � � �  

For a plot of E(x), see Figure 9.1 on page 164. 

ELRF 
This function evaluates Carlson�s incomplete elliptic integral of the first kind RF(X, Y, Z). 

Function Return Value 
ELRF � Function value.   (Output) 

Required Arguments 
X � First variable of the incomplete elliptic integral.   (Input)  

It must be nonnegative 

Y � Second variable of the incomplete elliptic integral.   (Input)  
It must be nonnegative. 

Z � Third variable of the incomplete elliptic integral.   (Input)  
It must be nonnegative. 

FORTRAN 90 Interface 
Generic:  ELRF(X, Y, Z) 

Specific:  The specific interface names are S_ELRF and D_ELRF. 

FORTRAN 77 Interface 
Single: ELRF(X, Y, Z) 

Double: The double precision name is DELRF. 

Example 
In this example, RF(0, 1, 2) is computed and printed. 
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      USE ELRF_INT 
      USE UMACH_INT 
!                               Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X, Y, Z 
!                                 Compute 
      X     = 0.0 
      Y     = 1.0 
      Z     = 2.0 
      VALUE = ELRF(X, Y, Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, Y, Z, VALUE 
99999 FORMAT (� ELRF(�, F6.3, �,�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
ELRF( 0.000, 1.000, 2.000) = 1.311 

Description 
The Carlson�s complete elliptic integral of the first kind is defined to be 
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The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and  
y + z must be greater than or equal to 5s. Should any of these conditions fail, ELRF is set to b. 
Here, b = AMACH(2) is the largest and s = AMACH(1) is the smallest representable floating-point 
number. 

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson 
(1979). 

ELRD 
This function evaluates Carlson�s incomplete elliptic integral of the second kind RD(X, Y, Z). 

Function Return Value 
ELRD � Function value. (Output) 

Required Arguments 
X � First variable of the incomplete elliptic integral.   (Input)  

It must be nonnegative. 

Y � Second variable of the incomplete elliptic integral.   (Input)  
It must be nonnegative. 
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Z � Third variable of the incomplete elliptic integral.   (Input)  
It must be positive. 

FORTRAN 90 Interface 
Generic:  ELRD(X, Y, Z) 

Specific:  The specific interface names are S_ELRD and D_ELRD. 

FORTRAN 77 Interface 
Single: ELRD(X, Y, Z) 

Double: The double precision name is DELRD. 

Example 
In this example, RD(0, 2, 1) is computed and printed. 

      USE ELRD_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X, Y, Z 
!                                 Compute 
      X     = 0.0 
      Y     = 2.0 
      Z     = 1.0 
      VALUE = ELRD(X, Y, Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, Y, Z, VALUE 
99999 FORMAT (� ELRD(�, F6.3, �,�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
ELRD( 0.000, 2.000, 1.000) = 1.797 

Description 
The Carlson�s complete elliptic integral of the second kind is defined to be 
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The arguments must be nonnegative and less than or equal to 0.69(�ln �)��� s���� where  
� = AMACH(4) is the machine precision, s = AMACH(1) is the smallest representable positive 
number. Furthermore, x + y and z must be greater than max{3s���, 3/b���}, where b = AMACH(2) is 
the largest floating-point number. If any of these conditions are false, then ELRD is set to b.  
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The function ELRD is based on the code by Carlson and Notis (1981) and the work of Carlson 
(1979). 

ELRJ 
This function evaluates Carlson�s incomplete elliptic integral of the third kind RJ(X, Y, Z, RHO) 

Function Return Value 
ELRJ � Function value.   (Output) 

Required Arguments 
X � First variable of the incomplete elliptic integral.   (Input)  

It must be nonnegative. 

Y � Second variable of the incomplete elliptic integral.   (Input)  
It must be nonnegative. 

Z � Third variable of the incomplete elliptic integral.   (Input)  
It must be nonnegative. 

RHO � Fourth variable of the incomplete elliptic integral.   (Input) 
It must be positive. 

FORTRAN 90 Interface 
Generic:  ELRJ(X, Y, Z, RHO) 

Specific:  The specific interface names are S_ELRJ and D_ELRJ. 

FORTRAN 77 Interface 
Single: ELRJ(X, Y, Z, RHO) 

Double: The double precision name is DELRJ. 

Example 
In this example, RJ(2, 3, 4, 5) is computed and printed. 

      USE ELRJ_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       RHO, VALUE, X, Y, Z 
!                                 Compute 
      X     = 2.0 
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      Y     = 3.0 
      Z     = 4.0 
      RHO   = 5.0 
      VALUE = ELRJ(X, Y, Z, RHO) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, Y, Z, RHO, VALUE 
99999 FORMAT (� ELRJ(�, F6.3, �,�, F6.3, �,�, F6.3, �,�, F6.3, & 
           �) = �, F6.3) 
      END 

Output 
ELRJ( 2.000, 3.000, 4.000, 5.000) = 0.143 

Description 
The Carlson�s complete elliptic integral of the third kind is defined to be 
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The arguments must be nonnegative. In addition, x + y, x + z, y + z and � must be greater than or 
equal to (5s)��� and less than or equal to .3(b/5)���, where s = AMACH(1) is the smallest 
representable floating-point number. Should any of these conditions fail, ELRF is set to  
b = AMACH(2), the largest floating-point number.  

The function ELRJ is based on the code by Carlson and Notis (1981) and the work of Carlson 
(1979). 

ELRC 
This function evaluates an elementary integral from which inverse circular functions, logarithms 
and inverse hyperbolic functions can be computed. 

Function Return Value 
ELRC � Function value.   (Output) 

Required Arguments 
X � First variable of the incomplete elliptic integral.   (Input)  

It must be nonnegative and satisfy the conditions given in Comments. 

Y � Second variable of the incomplete elliptic integral.   (Input)  
It must be positive and satisfy the conditions given in Comments. 

FORTRAN 90 Interface 
Generic:  ELRC(X, Y) 
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Specific:  The specific interface names are S_ELRC and D_ELRC. 

FORTRAN 77 Interface 
Single: ELRC(X, Y) 

Double: The double precision name is DELRC. 

Example 
In this example, RC(2.25, 2.0) is computed and printed. 

      USE ELRC_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X, Y 
!                                 Compute 
      X     = 0.0 
      Y     = 1.0 
      VALUE = ELRC(X, Y) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, Y, VALUE 
99999 FORMAT (� ELRC(�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
ELRC( 0.000, 1.000) = 1.571 

Comments 
The sum X + Y must be greater than or equal to ARGMIN and both X and Y must be less than or 
equal to ARGMAX. ARGMIN = s * 5 and ARGMAX = b/5, where s is the machine minimum 
(AMACH(1)) and b is the machine maximum (AMACH(2)). 

Description 
The special case of Carlson�s complete elliptic integral of the first kind is defined to be 
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The argument x must be nonnegative, y must be positive, and x + y must be less than or equal to 
b/5 and greater than or equal to 5s. If any of these conditions are false, then ELRC is set to b. 
Here, b = AMACH(2) is the largest and s = AMACH(1) is the smallest representable floating-point 
number.  

The function ELRC is based on the code by Carlson and Notis (1981) and the work of Carlson 
(1979). 
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Chapter 10: Elliptic and Related 
Functions 

Routines 
10.1. Weierstrass Elliptic and Related Functions 

Lemninscatic case .................................................................CWPL 173 
Lemninscatic case derivative..............................................CWPLD 175 
Equianharmonic case ...........................................................CWPQ 176 
Equianharmonic case derivative........................................ CWPQD 177 

10.2. Jacobi Elliptic Functions 
Jacobi function sn(x, m) (real argument) ................................EJSN 178 
Jacobi function cn(x, m) (real argument) ................................EJCN 180 
Jacobi function dn(x, m) (real argument)................................EJDN 182 
 

Usage Notes 
Elliptic functions are doubly periodic, single-valued complex functions of a single variable that are 
analytic, except at a finite number of poles. Because of the periodicity, we need consider only the 
fundamental period parallelogram. The irreducible number of poles, counting multiplicities, is the 
order of the elliptic function. The simplest, non-trivial, elliptic functions are of order two.  

The Weierstrass elliptic functions, �(z, �, ��) have a double pole at z = 0 and so are of order two. 
Here, 2� and 2�� are the periods.  

The Jacobi elliptic functions each have two simple poles and so are also of order two. The period 
of the functions is as follows: 

Function Periods 
sn(x, m)    4K(m)   2iK�(m) 
cn(x, m)  4K(m)   4iK�(m) 
dn(x, m)  2K(m)   4iK�(m) 

The function K(m) is the complete elliptic integral, see ELK (page 163), and K�(m) = K(1 � m). 

CWPL 
This function evaluates the Weierstrass� � function in the lemniscatic case for complex argument 
with unit period parallelogram. 



 

 
 

174 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions 

 

 

 

Function Return Value 
CWPL � Complex function value.   (Output) 

Required Arguments 
Z � Complex argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  CWPL (Z) 

Specific:  The specific interface names are C_CWPL and Z_CWPL. 

FORTRAN 77 Interface 
Complex: CWPL (Z) 

Double complex: The double complex name is ZWPL. 

Example 
In this example, �(0.25 + 0.25i) is computed and printed. 

      USE CWPL_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.25, 0.25) 
      VALUE = CWPL(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CWPL(�, F6.3, �,�, F6.3, �) = (�, & 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
CWPL( 0.250, 0.250) = ( 0.000,-6.875) 

Description 
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with 
periods 2� and 2�� and a double pole at z = 0. CWPL(Z) computes �(z | �, ��) with 2� = 1 and 
2�� = i. 

The input argument is first reduced to the fundamental parallelogram of all z satisfying 
 �1/2 � �z � 1/2 and �1/2 � 	z � 1/2. Then, a rational approximation is used. 

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of 
CWPL. If the argument is a lattice point, then b = AMACH(2) , the largest floating-point number, is 
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returned. If the argument has modulus greater than 10���, then NaN (not a number) is returned. 
Here, � = AMACH(4) is the machine precision. 

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977). 

CWPLD 
This function evaluates the first derivative of the Weierstrass� � function in the lemniscatic case 
for complex argument with unit period parallelogram. 

Function Return Value 
CWPLD � Complex function value.   (Output) 

Required Arguments 
Z � Complex argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  CWPLD (Z) 

Specific:  The specific interface names are C_CWPLD and Z_CWPLD. 

FORTRAN 77 Interface 
Complex: CWPLD (Z) 

Double complex: The double complex name is ZWPLD. 

Example 
In this example, �(0.25 + 0.25i) is computed and printed. 

      USE CWPLD_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.25, 0.25) 
      VALUE = CWPLD(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CWPLD(�, F6.3, �,�, F6.3, �) = (�, & 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
CWPLD( 0.250, 0.250) = (36.054,36.054) 
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Description 
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with 
periods 2� and 2�� and a double pole at z = 0. CWPLD(Z) computes the derivative of �(z | �, ��) 
with 2� = 1 and 2�� = i. CWPL, page 173, computes �(z | �, ��). 

The input argument is first reduced to the fundamental parallelogram of all z satisfying  
�1/2 � �z � 1/2 and �1/2 � 	z � 1/2. Then, a rational approximation is used. 

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of 
CWPL. If the argument is a lattice point, then b = AMACH(2), the largest floating-point number, is 
returned. 

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977). 

CWPQ 
This function evaluates the Weierstrass� � function in the equianharmonic case for complex 
argument with unit period parallelogram. 

Function Return Value 
CWPQ � Complex function value.   (Output) 

Required Arguments 
Z � Complex argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  CWPQ (Z) 

Specific:  The specific interface names are C_CWPQ and Z_CWPQ. 

FORTRAN 77 Interface 
Complex: CWPQ (Z) 

Double complex: The double complex name is ZWPQ. 

Example 
In this example, �(0.25 + 0.14437567i) is computed and printed. 

      USE CWPQ_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.25, 0.14437567) 
      VALUE = CWPQ(Z) 
!                                 Print the results 
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      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CWPQ(�, F6.3, �,�, F6.3, �) = (�, & 
           F7.3, �,�, F7.3, �)�) 
      END 

Output 
CWPQ( 0.250, 0.144) = ( 5.895,-10.216) 

Description 
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with 
periods 2� and 2�� and a double pole at z = 0. CWPQ(Z) computes �(z | �, ��) with  

4 1 3 and 4 1 3i i� � �� � � �  

The input argument is first reduced to the fundamental parallelogram of all z satisfying 

1/ 2 1/ 2 and 3 / 4 3 / 4z z� � � � � � � �  

Then, a rational approximation is used. 

All arguments are valid with the exception of the lattice points  

� � � �1 3 1 3z m i n i� � � �  

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest 
floating-point number, is returned. If the argument has modulus greater than 10���, then NaN 
(not a number) is returned. Here, � = AMACH(4) is the machine precision. 

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977). 

CWPQD 
This function evaluates the first derivative of the Weierstrass� � function in the equianharmonic 
case for complex argument with unit period parallelogram. 

Function Return Value 
CWPQD � Complex function value.   (Output) 

Required Arguments 
Z � Complex argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic:  CWPQD (Z) 

Specific:  The specific interface names are C_CWPQD and Z_CWPQD. 
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FORTRAN 77 Interface 
Complex: CWPQD (Z) 

Double complex: The double complex name is ZWPQD. 

Example 
In this example, �(0.25 + 0.14437567i) is computed and printed. 

      USE CWPQD_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (0.25, 0.14437567) 
      VALUE = CWPQD(Z) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, VALUE 
99999 FORMAT (� CWPQD(�, F6.3, �,�, F6.3, �) = (�, & 
          F6.3, �,�, F6.3, �)�) 
      END 

Output 
CWPQD( 0.250, 0.144) = ( 0.028,85.934) 

Description 
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with 
periods 2� and 2�� and a double pole at z = 0. CWPQD(Z) computes the derivative of �(z | �, ��) 
with 

4 1 3 and 4 1 3i i� � �� � � �  

CWPQ, page 176, computes �(z | �, ��). 

The input argument is first reduced to the fundamental parallelogram of all z satisfying 

1/ 2 1/ 2 and 3 / 4 3 / 4z z� � � � � � � �  

Then, a rational approximation is used. 

All arguments are valid with the exception of the lattice points  

� � � �1 3 1 3z m i n i� � � �  

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest 
floating-point number, is returned.  

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977). 

EJSN 
This function evaluates the Jacobi elliptic function sn(x, m). 
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Function Return Value 
EJSN � Real or complex function value.   (Output) 

Required Arguments 
X � Real or complex argument for which the function value is desired.   (Input) 

AM � Parameter of the elliptic function (m = k�).   (Input) 

FORTRAN 90 Interface 
Generic:  EJSN(X, AM) 

Specific:  The specific interface names are S_EJSN, D_EJSN, C_EJSN, and  Z_EJSN 

FORTRAN 77 Interface 
Single: EJSN(X, AM) 

Double: The double precision name is DEJSN. 

Complex: The complex name is CEJSN. 

Double Complex:  The double complex name is ZEJSN. 

Example 
In this example, sn(1.5, 0.5) is computed and printed. 

      USE EJSN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       AM, VALUE, X 
!                                 Compute 
      AM    = 0.5 
      X     = 1.5 
      VALUE = EJSN(X, AM) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, AM, VALUE 
99999 FORMAT (� EJSN(�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
EJSN( 1.500, 0.500) = 0.968 

Comments 
Informational errors 
Type Code 

   3     2  The result is accurate to less than one half precision because |X| is too large. 
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   3     2  The result is accurate to less than one half precision because |REAL (Z)| is 
   too large. 

   3     3  The result is accurate to less than one half precision because |AIMAG (Z)| is 
   too large. 

   3     5  Landen transform did not converge. Result may not be accurate. This  
   should never occur. 

Description 
The Jacobi elliptic function sn(x, m) = sin 
, where the amplitude 
 is defined by the following: 

� �
1

20 21 sin

dx
m

� �

�

�

�

�  

The function sn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that 
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is 
applied until the parameter is small. The small parameter approximation is then applied. 

Additional Example 
In this example, sn(1.5 + 0.3i, 0.5) is computed and printed. 

      USE EJSN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       AM 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.5, 0.3) 
      AM    = 0.5 
      VALUE = EJSN(Z, AM) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, AM, VALUE 
99999 FORMAT (� EJSN((�, F6.3, �,�, F6.3, �), �, F6.3, �) = (�, & 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
EJSN(( 1.500, 0.300), 0.500) = ( 0.993, 0.054) 

EJCN 
This function evaluates the Jacobi elliptic function cn(x, m). 

Function Return Value 
EJCN � Real or complex function value.   (Output) 

Required Arguments 
X � Real or complex argument for which the function value is desired.   (Input) 
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AM � Parameter of the elliptic function (m = k2).   (Input) 

FORTRAN 90 Interface 
Generic:  EJCN(X, AM) 

Specific:  The specific interface names are S_EJCN, D_EJCN, C_EJCN, and Z_EJCN. 

FORTRAN 77 Interface 
Single: EJCN(X, AM) 

Double: The double precision name is DEJCN. 

Complex: The complex name is CEJCN. 

Double Complex:  The double complex name is ZEJCN. 

Example 
In this example, cn(1.5, 0.5) is computed and printed. 

      USE EJCN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       AM, VALUE, X 
!                                 Compute 
      AM    = 0.5 
      X     = 1.5 
      VALUE = EJCN(X, AM) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, AM, VALUE 
99999 FORMAT (� EJCN(�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
EJCN( 1.500, 0.500) = 0.250 

Comments 
Informational errors 
Type  Code 

   3     2  The result is accurate to less than one half precision because |X| is too large. 

   3     2  The result is accurate to less than one half precision because |REAL (Z)| is 
   too large. 

   3     3  The result is accurate to less than one half precision because |AIMAG (Z)| is 
   too large. 

   3     5  Landen transform did not converge. Result may not be accurate. This  
   should never occur. 
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Description 
The Jacobi elliptic function cn(x, m) = cos 
, where the amplitude 
 is defined by the following:  

� �
1

20 21 sin

dx
m

� �

�

�

�

�  

The function cn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that 
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is 
applied until the parameter is small. The small parameter approximation is then applied. 

Additional Example 
In this example, cn(1.5 + 0.3i, 0.5) is computed and printed. 

      USE EJCN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       AM 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.5, 0.3) 
      AM    = 0.5 
      VALUE = EJCN(Z, AM) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, AM, VALUE 
99999 FORMAT (� EJCN((�, F6.3, �,�, F6.3, �), �, F6.3, �) = (�, & 
           F6.3, �,�, F6.3, �)�) 
      END 

Output 
EJCN(( 1.500, 0.300), 0.500) = ( 0.251,-0.212) 

EJDN 
This function evaluates the Jacobi elliptic function dn(x, m). 

Function Return Value 
EJDN � Real or complex function value.   (Output) 

Required Arguments 
X � Real or complex argument for which the function value is desired.   (Input) 

AM � Parameter of the elliptic function (m = k�).   (Input) 

FORTRAN 90 Interface 
Generic:  EJDN(X, AM) 

Specific:  The specific interface names are S_EJDN, D_EJDN, C_EJDN, and Z_EJDN. 
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FORTRAN 77 Interface 
Single: EJDN(X, AM) 

Double: The double precision name is DEJDN. 

Complex: The complex precision name is CEJDN. 

Double Complex:  The double complex precision name is ZEJDN. 

Example 
In this example, dn(1.5, 0.5) is computed and printed. 

      USE EJDN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       AM, VALUE, X 
!                                 Compute 
      AM    = 0.5 
      X     = 1.5 
      VALUE = EJDN(X, AM) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, AM, VALUE 
99999 FORMAT (� EJDN(�, F6.3, �,�, F6.3, �) = �, F6.3) 
      END 

Output 
EJDN( 1.500, 0.500) = 0.729 

Comments 
Informational errors 
Type  Code 

   3     2  The result is accurate to less than one half precision because |X| is too large. 

   3    2  The result is accurate to less than one half precision because |REAL (Z)| is 
   too large. 

   3    3  The result is accurate to less than one half precision because |AIMAG (Z)| is 
   too large. 

   3     5  Landen transform did not converge. Result may not be accurate. This  
   should never occur. 

Description 
The Jacobi elliptic function dn(x, m) = (1 � m sin2 
) 1

2 , where the amplitude 
 is defined by the 
following: 

� �
1

20 21 sin

dx
m

� �

�

�

�

�  
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The function dn(x, m) is computed by first applying, if necessary, a Jacobi transformation so 
that the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is 
applied until the parameter is small. The small parameter approximation is then applied. 

Additional Example 
In this example, dn(1.5 + 0.3i, 0.5) is computed and printed. 

      USE EJDN_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       AM 
      COMPLEX    VALUE, Z 
!                                 Compute 
      Z     = (1.5, 0.3) 
      AM    = 0.5 
      VALUE = EJDN(Z, AM) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) Z, AM, VALUE 
99999 FORMAT (� EJDN((�, F6.3, �,�, F6.3, �), �, F6.3, �) = (�, & 
              F6.3, �,�, F6.3, �)�) 
      END 

Output 
EJDN(( 1.500, 0.300), 0.500) = ( 0.714,-0.037) 
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Chapter 11: Probability Distribution 
Functions and Inverses 

Routines 
11.1. Discrete Random Variables: Distribution Functions and Probability 

Functions 
Binomial distribution function ................................................ BINDF 190 
Binomial probability...............................................................BINPR 191 
Hypergeometric distribution function ...................................HYPDF 194 
Hypergeometric probability ..................................................HYPPR 196 
Poisson distribution function .................................................POIDF 197 
Poisson probability................................................................POIPR 199 

11.2. Continuous Random Variables: Distribution Functions and Their 
Inverses 
Kolmogorov-Smirnov one-sided statistic 
distribution function............................................................AKS1DF 201 
Kolmogorov-Smirnov two-sided statistic 
distribution function............................................................AKS2DF 204 
Normal (Gaussian) distribution function ...........................ANORDF 206 
Inverse of the normal distribution function.........................ANORIN 208 
Beta distribution function ..................................................... BETDF 209 
Inverse of the beta distribution function................................ BETIN 212 
Bivariate normal distribution function...................................BNRDF 213 
Chi-squared distribution function ..........................................CHIDF 215 
Inverse of the chi-squared distribution function ..................... CHIIN 217 
Noncentral chi-squared distribution function .......................CSNDF 219 
F distribution function................................................................FDF 222 
Inverse of the F distribution function.......................................... FIN 223 
Gamma distribution function ...............................................GAMDF 225 
Student’s t distribution function.................................................TDF 227 
Inverse of the Student’s t distribution function........................... TIN 229 
Noncentral Student’s t distribution function ........................... TNDF 231 

11.3. General Continuous Random Variables 
Distribution function given ordinates of density .....................GCDF 233 
Inverse of distribution function given ordinates of density......GCIN 236 
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Usage Notes 
Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz 
(1969, 1970a, 1970b). These are also good references for the specific distributions. 

In order to keep the calling sequences simple, whenever possible, the routines in this chapter are 
written for standard forms of statistical distributions. Hence, the number of parameters for any 
given distribution may be fewer than the number often associated with the distribution. For 
example, while a gamma distribution is often characterized by two parameters (or even a third, 
“location”), there is only one parameter that is necessary, the “shape.” The “scale” parameter can 
be used to scale the variable to the standard gamma distribution. For another example, the 
functions relating to the normal distribution, ANORDF (page 206) and ANORIN (page 208), are for a 
normal distribution with mean equal to zero and variance equal to one. For other means and 
variances, it is very easy for the user to standardize the variables by subtracting the mean and 
dividing by the square root of the variance. 

The distribution function for the (real, single-valued) random variable X is the function F defined 
for all real x by 

F(x) = Prob(X � x) 

where Prob(�) denotes the probability of an event. The distribution function is often called the 
cumulative distribution function (CDF). 

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than 
the left endpoint and 1 for values greater than the right endpoint. The routines in this chapter 
return the correct values for the distribution functions when values outside of the range of the 
random variable are input, but warning error conditions are set in these cases. 

Discrete Random Variables 
For discrete distributions, the function giving the probability that the random variable takes on 
specific values is called the probability function, defined by 

p(x) = Prob(X = x) 

The “PR” routines in this chapter evaluate probability functions. 

The CDF for a discrete random variable is 

� � � �
A

F x p k��  

where A is the set such that k � x. The “DF” routines in this chapter evaluate cumulative 
distributions functions. Since the distribution function is a step function, its inverse does not exist 
uniquely. 
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Figure 11-1   Discrete Random Variable 

In the plot above, a routine like BINPR (page 191) in this chapter evaluates the individual 
probability, given X. A routine like BINDF (page 190) would evaluate the sum of the probabilities 
up to and including the probability at X. 

Continuous Distributions 
For continuous distributions, a probability function, as defined above, would not be useful because 
the probability of any given point is 0. For such distributions, the useful analog is the probability 
density function (PDF). The integral of the PDF is the probability over the interval; if the 
continuous random variable X has PDF f, then 

� � � �Prob
b

a
a X b f x dx� � � �  

The relationship between the CDF and the PDF is 

� � � �
x

F x f t dt
��

� �  

as shown below. 
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Figure 11-2   Probability Density Function 

The “DF” routines for continuous distributions in this chapter evaluate cumulative distribution 
functions, just as the ones for discrete distributions. 

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the 
support of the distribution. The “IN” routines in this chapter compute the inverses of the 
distribution functions; that is, given F(x) (called “P” for “probability”), a routine like BETIN (page 
212) computes x. The inverses are defined only over the open interval (0, 1). 
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Figure 11-3   Cumulative Probability Distribution Function 

There are two routines in this chapter that deal with general continuous distribution functions. The 
routine GCDF (page 233) computes a distribution function using values of the density function, and 
the routine GCIN (page 236) computes the inverse. These two routines may be useful when the 
user has an estimate of a probability density. 

Additional Comments 
Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to 
an inverse function, it is often impossible to achieve good accuracy because of the nature of the 
representation of numeric values. In this case, it may be better to work with the complementary 
distribution function (one minus the distribution function). If the distribution is symmetric about 
some point (as the normal distribution, for example) or is reflective about some point (as the beta 
distribution, for example), the complementary distribution function has a simple relationship with 
the distribution function. For example, to evaluate the standard normal distribution at 4.0, using 
ANORIN (page 208) directly, the result to six places is 0.999968. Only two of those digits are really 
useful, however. A more useful result may be 1.000000 minus this value, which can be obtained to 
six significant figures as 3.16713E�05 by evaluating ANORIN at �4.0. For the normal distribution, 
the two values are related by �(x) = 1 � �(�x), where �(�) is the normal distribution function. 
Another example is the beta distribution with parameters 2 and 10. This distribution is skewed to 
the right; so evaluating BETDF at 0.7, we obtain 0.999953. A more precise result is obtained by 
evaluating BETDF with parameters 10 and 2 at 0.3. This yields 4.72392E�5. (In both of these 
examples, it is wise not to trust the last digit.)  
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Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun 
(1964). The algorithms make use of various expansions and recursive relationships, and often use 
different methods in different regions. 

Cumulative distribution functions are defined for all real arguments; however, if the input to one 
of the distribution functions in this chapter is outside the range of the random variable, an error of 
Type 1 is issued, and the output is set to zero or one, as appropriate. A Type 1 error is of lowest 
severity, a “note;” and, by default, no printing or stopping of the program occurs. The other 
common errors that occur in the routines of this chapter are Type 2, “alert,” for a function value 
being set to zero due to underflow; Type 3, “warning,” for considerable loss of accuracy in the 
result returned; and Type 5, “terminal,” for incorrect and/ or inconsistent input, complete loss of 
accuracy in the result returned, or inability to represent the result (because of overflow). When a 
Type 5 error occurs, the result is set to NaN (not a number, also used as a missing value code, 
obtained by IMSL routine AMACH(6). (See the section “User Errors” in the Reference Material.) 

BINDF 
This function evaluates the binomial distribution function. 

Function Return Value 
BINDF — Function value, the probability that a binomial random variable takes a value less 

than or equal to K.   (Output)  
BINDF is the probability that K or fewer successes occur in N independent Bernoulli 
trials, each of which has a P probability of success. 

Required Arguments 
K — Argument for which the binomial distribution function is to be evaluated.   (Input) 

N — Number of Bernoulli trials.   (Input) 

P — Probability of success on each trial.   (Input) 

FORTRAN 90 Interface 
Generic: BINDF (K, N, P) 

Specific:  The specific interface names are S_BINDF and D_BINDF. 

FORTRAN 77 Interface 
Single: BINDF (K, N, P) 

Double: The double precision function name is DBINDF. 
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Example 
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the 
probability that X is less than or equal to 3. 

      USE IMSL_LIBRARIES 
      INTEGER    K, N, NOUT 
      REAL       P, PR 
! 
      CALL UMACH (2, NOUT) 
      K  = 3 
      N  = 5 
      P  = 0.95 
      PR = BINDF(K,N,P) 
      WRITE (NOUT,99999) PR 
99999 FORMAT (’ The probability that X is less than or equal to 3 is ’ & 
            , F6.4) 
      END 

Output 
The probability that X is less than or equal to 3 is 0.0226 

Comments 
Informational errors  
Type  Code 

   1     3  The input argument, K, is less than zero. 
   1     4  The input argument, K, is greater than the number of Bernoulli 

trials, N. 

Description 
Function BINDF evaluates the distribution function of a binomial random variable with 
parameters n and p. It does this by summing probabilities of the random variable taking on the 
specific values in its range. These probabilities are computed by the recursive relationship 

� �
� �

� �
� �

1
Pr Pr 1

1
n j p

X j X j
j p
� �

� � � �

�

 

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not 
greater than n times p, and are computed backward from n, otherwise. The smallest positive 
machine number, �, is used as the starting value for summing the probabilities, which are rescaled 
by (1 � p)n� if forward computation is performed and by pn� if backward computation is done.  

For the special case of p = 0, BINDF is set to 1; and for the case p = 1, BINDF is set to 1 if k = n 
and to 0 otherwise. 

BINPR 
This function evaluates the binomial probability function. 
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Function Return Value 
BINPR — Function value, the probability that a binomial random variable takes a value equal 

to K.   (Output) 

Required Arguments 
K — Argument for which the binomial probability function is to be evaluated.   (Input) 

N — Number of Bernoulli trials.   (Input) 

P — Probability of success on each trial.   (Input) 

FORTRAN 90 Interface 
Generic: BINPR (K, N, P) 

Specific:  The specific interface names are S_BINPR and D_BINPR. 

FORTRAN 77 Interface 
Single: BINPR (K, N, P) 

Double: The double precision function name is DBINPR. 

Example 
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the 
probability that X is equal to 3. 

      USE IMSL_LIBRARIES 
      INTEGER    K, N, NOUT 
      REAL       P, PR 
! 
      CALL UMACH (2, NOUT) 
      K  = 3 
      N  = 5 
      P  = 0.95 
      PR = BINPR(K,N,P) 
      WRITE (NOUT,99999) PR 
99999 FORMAT (’ The probability that X is equal to 3 is ’, F6.4) 
      END 

Output 
The probability that X is equal to 3 is 0.0214 

Comments 
Informational errors  
Type  Code 
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   1     3  The input argument, K, is less than zero. 
   1     4  The input argument, K, is greater than the number of Bernoulli 

trials, N. 

Description 
The function BINPR evaluates the probability that a binomial random variable with parameters n 
and p takes on the value k. It does this by computing probabilities of the random variable taking 
on the values in its range less than (or the values greater than) k. These probabilities are 
computed by the recursive relationship 

� �
� �

� �
� �

1
Pr Pr 1

1
n j p

X j X j
j p
� �

� � � �

�

 

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not 
greater than n times p, and are computed backward from n, otherwise. The smallest positive 
machine number, �, is used as the starting value for computing the probabilities, which are 
rescaled by (1 � p)n� if forward computation is performed and by pn� if backward computation is 
done. 

For the special case of p = 0, BINPR is set to 0 if k is greater than 0 and to 1 otherwise; and for the 
case p = 1, BINPR is set to 0 if k is less than n and to 1 otherwise. 

 
Figure 11-4   Binomial Probability Function 
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HYPDF 
This function evaluates the hypergeometric distribution function. 

Function Return Value 
HYPDF — Function value, the probability that a hypergeometric random variable takes a 

value less than or equal to K.   (Output)  
HYPDF is the probability that K or fewer defectives occur in a sample of size N drawn 
from a lot of size L that contains M defectives. 
See Comment 1. 

Required Arguments 
K — Argument for which the hypergeometric distribution function is to be evaluated.   (Input) 

N — Sample size.   (Input)  
N must be greater than zero and greater than or equal to K. 

M — Number of defectives in the lot.   (Input) 

L — Lot size.   (Input)  
L must be greater than or equal to N and M. 

FORTRAN 90 Interface 
Generic: HYPDF (K, N, M, L ) 

Specific:  The specific interface names are S_HYPDF and D_HYPDF. 

FORTRAN 77 Interface 
Single: HYPDF (K, N, M, L) 

Double: The double precision function name is DHYPDF. 

Example 
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this 
example, we evaluate the distribution function at 7. 

      USE IMSL_LIBRARIES 
      INTEGER    K, L, M, N, NOUT 
      REAL       DF 
! 
      CALL UMACH (2, NOUT) 
      K  = 7 
      N  = 100 
      L  = 1000 
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      M  = 70 
      DF = HYPDF(K,N,M,L) 
      WRITE (NOUT,99999) DF 
99999 FORMAT (’ The probability that X is less than or equal to 7 is ’ & 
            , F6.4) 
      END 

Output 
The probability that X is less than or equal to 7 is 0.5995 

Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = HYPDF(K, N, M, L) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(HYPDF(K, N, M, L)) 

If this is too much of a restriction on the programmer, then the specific name can be used 
without this restriction. 

2. Informational errors  

Type    Code 

   1    5 The input argument, K, is less than zero. 
   1    6 The input argument, K, is greater than the sample size. 

Description 
The function HYPDF evaluates the distribution function of a hypergeometric random variable 
with parameters n, l, and m. The hypergeometric random variable X can be thought of as the 
number of items of a given type in a random sample of size n that is drawn without replacement 
from a population of size l containing m items of this type. The probability function is  

� � � �Pr for , 1, 2, , min ,
m l m
j n j

l
n

X j j i i i n m
�� �� �

� �� �
�� �� �

� �
� �
� �

� � � � � �  

where i = max(0, n � l + m).  

If k is greater than or equal to i and less than or equal to min(n, m), HYPDF sums the terms in this 
expression for j going from i up to k. Otherwise, HYPDF returns 0 or 1, as appropriate. So, as to 
avoid rounding in the accumulation, HYPDF performs the summation differently depending on 
whether or not k is greater than the mode of the distribution, which is the greatest integer in 
(m + 1)(n + 1)/(l + 2). 
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HYPPR 
This function evaluates the hypergeometric probability function. 

Function Return Value 
HYPPR — Function value, the probability that a hypergeometric random variable takes a 

value equal to K.   (Output)  
HYPPR is the probability that exactly K defectives occur in a sample of size N drawn 
from a lot of size L that contains M defectives. 
See Comment 1. 

Required Arguments 
K — Argument for which the hypergeometric probability function is to be evaluated.   (Input) 

N — Sample size.   (Input)  
N must be greater than zero and greater than or equal to K. 

M — Number of defectives in the lot.   (Input) 

L — Lot size.   (Input)  
L must be greater than or equal to N and M. 

FORTRAN 90 Interface 
Generic: HYPPR (K, N, M, L) 

Specific:  The specific interface names are S_HYPPR and D_HYPPR. 

FORTRAN 77 Interface 
Single: HYPPR (K, N, M, L) 

Double: The double precision function name is DHYPPR. 

Example 
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this 
example, we evaluate the probability function at 7. 

      USE IMSL_LIBRARIES 
      INTEGER    K, L, M, N, NOUT 
      REAL       PR 
! 
      CALL UMACH (2, NOUT) 
      K  = 7 
      N  = 100 
      L  = 1000 
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      M  = 70 
      PR = HYPPR(K,N,M,L) 
      WRITE (NOUT,99999) PR 
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4) 
      END 

Output 
The probability that X is equal to 7 is 0.1628 

Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = HYPPR(K, N, M, L) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(HYPPR(K, N, M, L)) 

If this is too much of a restriction on the programmer, then the specific name can be used 
without this restriction. 

2. Informational errors  
Type  Code 

1 5 The input argument, K, is less than zero. 
1 6 The input argument, K, is greater than the sample size. 

Description 
The function HYPPR evaluates the probability function of a hypergeometric random variable 
with parameters n, l, and m. The hypergeometric random variable X can be thought of as the 
number of items of a given type in a random sample of size n that is drawn without replacement 
from a population of size l containing m items of this type. The probability function is 

� � � �Pr for , 1, 2, min ,
m l m
k n k

l
n

X k k i i i n m
�� �� �

� �� �
�� �� �

� �
� �
� �

� � � � � �  

where i = max(0, n � l + m).  

HYPPR evaluates the expression using log gamma functions. 

POIDF 
This function evaluates the Poisson distribution function. 
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Function Return Value 
POIDF — Function value, the probability that a Poisson random variable takes a value less 

than or equal to K.   (Output) 

Required Arguments 
K — Argument for which the Poisson distribution function is to be evaluated.   (Input) 

THETA — Mean of the Poisson distribution.   (Input)  
THETA must be positive. 

FORTRAN 90 Interface 
Generic: POIDF (K, THETA) 

Specific:  The specific interface names are S_POIDF and D_POIDF. 

FORTRAN 77 Interface 
Single: POIDF (K, THETA) 

Double: The double precision function name is DPOIDF. 

Example 
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate the distribution 
function at 7. 

      USE IMSL_LIBRARIES 
      INTEGER    K, NOUT 
      REAL       DF, THETA 
! 
      CALL UMACH (2, NOUT) 
      K     = 7 
      THETA = 10.0 
      DF    = POIDF(K,THETA) 
      WRITE (NOUT,99999) DF 
99999 FORMAT (’ The probability that X is less than or equal to ’, & 
            ’7 is ’, F6.4) 
      END 

Output 
The probability that X is less than or equal to 7 is 0.2202 

Comments 
Informational error  
Type  Code 

   1    1 The input argument, K, is less than zero. 
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Description 
The function POIDF evaluates the distribution function of a Poisson random variable with 
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive. 
The probability function (with � = THETA) is 

f(x) = e�� �x/x!, for x = 0, 1, 2, � 

The individual terms are calculated from the tails of the distribution to the mode of the distribution 
and summed. POIDF uses the recursive relationship 

f(x + 1) = f(x)�/(x + 1), for x = 0, 1, 2, �, k � 1 

with f(0) = e��. 

POIPR 
This function evaluates the Poisson probability function. 

Function Return Value 
POIPR — Function value, the probability that a Poisson random variable takes a value equal 

to K.   (Output) 

Required Arguments 
K — Argument for which the Poisson distribution function is to be evaluated.   (Input) 

THETA — Mean of the Poisson distribution.   (Input)  
THETA must be positive. 

FORTRAN 90 Interface 
Generic: POIPR(K, THETA) 

Specific:  The specific interface names are S_POIPR and D_POIPR. 

FORTRAN 77 Interface 
Single: POIPR(K, THETA) 

Double: The double precision function name is DPOIPR. 

Example 
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate the 
probability function at 7. 
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      USE POIPR_INT 
      USE UMACH_INT 
      INTEGER    K, NOUT 
      REAL       PR, THETA 
! 
      CALL UMACH (2, NOUT) 
      K     = 7 
      THETA = 10.0 
      PR    = POIPR(K,THETA) 
      WRITE (NOUT,99999) PR 
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4) 
      END 

Output 
The probability that X is equal to 7 is 0.0901 

Comments 
Informational error  
Type  Code 

   1    1 The input argument, K, is less than zero. 

Description 
The function POIPR evaluates the probability function of a Poisson random variable with 
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive. 
The probability function (with � = THETA) is 

f(k) = e���k/k!, for k = 0, 1, 2, � 

POIPR evaluates this function directly, taking logarithms and using the log gamma function. 
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Figure 11-5   Poisson Probability Function 

AKS1DF 
This function evaluates the distribution function of the one-sided Kolmogorov-Smirnov goodness 
of fit D� or D� test statistic based on continuous data for one sample. 

Function Return Value 
AKS1DF — The probability of a smaller D.   (Output) 

Required Arguments 
NOBS — The total number of observations in the sample.   (Input) 

D — The D� or D� test statistic.   (Input)  
D is the maximum positive difference of the empirical cumulative distribution function 
(CDF) minus the hypothetical CDF or the maximum positive difference of the 
hypothetical CDF minus the empirical CDF. 

FORTRAN 90 Interface 
Generic: AKS1DF(NOBS, D) 

Specific:  The specific interface names are S_AKS1DF and D_AKS1DF. 
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FORTRAN 77 Interface 
Single: AKS1DF(NOBS, D) 

Double: The double precision function name is DKS1DF. 

Example 
In this example, the exact one-sided probabilities for the tabled values of D+ or D�, given, for 
example, in Conover (1980, page 462), are computed. Tabled values at the 10% level of 
significance are used as input to AKS1DF for sample sizes of 5 to 50 in increments of 5. The last 
two tabled values are obtained using the asymptotic critical values of  

1.07 / NOBS  

The resulting probabilities should all be close to 0.90. 
      USE AKS1DF_INT 
      USE UMACH_INT 
      INTEGER    I, NOBS, NOUT 
      REAL       D(10) 
! 
      DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, & 
          0.160, 0.151/ 
! 
      CALL UMACH (2, NOUT) 
! 
      DO 10  I=1, 10 
         NOBS = 5*I 
! 
         WRITE (NOUT,99999) D(I), NOBS, AKS1DF(NOBS,D(I)) 
! 
99999    FORMAT (’ One-sided Probability for D = ’, F8.3, ’ with NOBS ’ & 
               , ’= ’, I2, ’ is ’, F8.4) 
   10 CONTINUE 
      END 

Output 
One-sided Probability for D =    0.447 with NOBS =  5 is   0.9000 
One-sided Probability for D =    0.323 with NOBS = 10 is   0.9006 
One-sided Probability for D =    0.266 with NOBS = 15 is   0.9002 
One-sided Probability for D =    0.232 with NOBS = 20 is   0.9009 
One-sided Probability for D =    0.208 with NOBS = 25 is   0.9002 
One-sided Probability for D =    0.190 with NOBS = 30 is   0.8992 
One-sided Probability for D =    0.177 with NOBS = 35 is   0.9011 
One-sided Probability for D =    0.165 with NOBS = 40 is   0.8987 
One-sided Probability for D =    0.160 with NOBS = 45 is   0.9105 
One-sided Probability for D =    0.151 with NOBS = 50 is   0.9077 

Comments 
1. Workspace may be explicitly provided, if desired, by use of AK21DF/DK21DF. The 

reference is: 
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AK2DF(NOBS, D, WK) 

The additional argument is: 

WK — Work vector of length 3 * NOBS + 3 if NOBS � 80. WK is not used if NOBS is 
greater than 80. 

2. Informational errors 
Type  Code  

   1    2  Since the D test statistic is less than zero, the distribution function is 
zero at D. 

   1    3  Since the D test statistic is greater than one, the distribution function 
is one at D. 

3. If NOBS � 80, then exact one-sided probabilities are computed. In this case, on the order 
of NOBS� operations are required. For NOBS > 80, approximate one-sided probabilities 
are computed. These approximate probabilities require very few computations. 

4. An approximate two-sided probability for the D = max (D�, D��) statistic can be 
computed as twice the AKS1DF probability for D (minus one, if the probability from 
AKS1DF is greater than 0.5). 

Description 
Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided 
Kolmogorov-Smirnov one-sample D� or D� statistic when the theoretical CDF is strictly 
continuous. Exact probabilities are computed according to a method given by Conover (1980, 
page 350) for sample sizes of 80 or less. For sample sizes greater than 80, the asympotic 
methods discussed by Conover are used. 

Let F(x) denote the theoretical distribution function, and let Sn(x) denote the empirical 
distribution function obtained from a sample of size NOBS. Then, the D� statistic is computed as 

� � � �sup n
x

D F x S x� � �� �� �  

while the one-sided D� statistic is computed as 

� � � �sup n
x

D S x F x� � �� �� �  

Programming Notes 
Routine AKS1DF requires on the order of NOBS� operations to compute the exact probabilities, 
where an operation consists of taking ten or so logarithms. Because so much computation is 
occurring within each “operation,” AKS1DF is much slower than its two-sample counterpart, 
IMSL function AKS2DF (page 204). 
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AKS2DF 
This function evaluates the distribution function of the Kolmogorov-Smirnov goodness of fit D 
test statistic based on continuous data for two samples. 

Function Return Value 
AKS2DF — The probability of a smaller D.   (Output) 

Required Arguments 
NOBSX — The total number of observations in the first sample.   (Input) 

NOBSY — The total number of observations in the second sample.   (Input) 

D — The D test statistic.   (Input)  
D is the maximum absolute difference between empirical cumulative distribution 
functions (CDFs) of the two samples. 

FORTRAN 90 Interface 
Generic: AKS2DF(NOBSX, NOBSY, D) 

Specific:  The specific interface names are S_AKS2DF and D_AKS2DF. 

FORTRAN 77 Interface 
Single: AKS2DF(NOBSX, NOBSY, D) 

Double: The double precision function name is DKS2DF. 

Example 
Function AKS2DF is used to compute the probability of a smaller D statistic for a variety of 
sample sizes using values close to the 0.95 probability value. 

      USE AKS2DF_INT 
      USE UMACH_INT 
      INTEGER    I, NOBSX(10), NOBSY(10), NOUT 
      REAL       D(10) 
! 
      DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/ 
      DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/ 
      DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, & 
          0.18, 0.18/ 
! 
      CALL UMACH (2, NOUT) 
! 
      DO 10  I=1, 10 
! 
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         WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I), & 
                          AKS2DF(NOBSX(I),NOBSY(I),D(I)) 
! 
99999    FORMAT (’ Probability for D = ’, F5.3, ’ with NOBSX = ’, I3, & 
               ’ and NOBSY = ’, I3, ’ is ’, F9.6, ’.’) 
   10 CONTINUE 
      END 

Output 
Probability for D = 0.700 with NOBSX =   5 and NOBSY =  10 is  0.980686. 
Probability for D = 0.550 with NOBSX =  20 and NOBSY =  10 is  0.987553. 
Probability for D = 0.475 with NOBSX =  40 and NOBSY =  10 is  0.972423. 
Probability for D = 0.443 with NOBSX =  70 and NOBSY =  10 is  0.961646. 
Probability for D = 0.403 with NOBSX = 110 and NOBSY =  10 is  0.928667. 
Probability for D = 0.286 with NOBSX = 200 and NOBSY =  20 is  0.921126. 
Probability for D = 0.211 with NOBSX = 200 and NOBSY =  40 is  0.917110. 
Probability for D = 0.180 with NOBSX = 200 and NOBSY =  60 is  0.914520. 
Probability for D = 0.180 with NOBSX = 100 and NOBSY =  80 is  0.908185. 
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is  0.946098. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of AK22DF/DK22DF. The 

reference is: 

AK22DF(NOBSX, NOBSY, D, WK) 

The additional argument is 

WK — Work vector of length max(NOBSX, NOBSY) + 1. 

2. Informational errors  
Type  Code  

   1    2  Since the D test statistic is less than zero, then the distribution 
function is zero at D. 

   1    3  Since the D test statistic is greater than one, then the distribution 
function is one at D. 

Description 
Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided 
Kolmogorov-Smirnov two-sample D statistic when the theoretical CDF is strictly continuous. 
Exact probabilities are computed according to a method given by Kim and Jennrich (1973). 
Approximate asymptotic probabilities are computed according to methods also given in this 
reference.  

Let Fn(x) and Gm(x) denote the empirical distribution functions for the two samples, based on  
n = NOBSX and m = NOBSY observations. Then, the D statistic is computed as 

� � � �sup n m
x

D F x G x� �  
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Programming Notes 
Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute the exact 
probabilities, where an operation consists of an addition and a multiplication. For  
NOBSX * NOBSY less than 10000, the exact probability is computed. If this is not the case, then 
the Smirnov approximation discussed by Kim and Jennrich is used if the minimum of NOBSX 
and NOBSY is greater than ten percent of the maximum of NOBSX and NOBSY, or if the minimum 
is greater than 80. Otherwise, the Kolmogorov approximation discussed by Kim and Jennrich is 
used. 

ANORDF 
This function evaluates the standard normal (Gaussian) distribution function. 

Function Return Value 
ANORDF — Function value, the probability that a normal random variable takes a value less 

than or equal to X.   (Output) 

Required Arguments 
X — Argument for which the normal distribution function is to be evaluated.   (Input) 

FORTRAN 90 Interface 
Generic: ANORDF (X) 

Specific:  The specific interface names are S_ANORDF and D_ANORDF. 

FORTRAN 77 Interface 
Single: ANORDF (X) 

Double: The double precision function name is DNORDF. 

Example 
Suppose X is a normal random variable with mean 100 and variance 225. In this example, we 
find the probability that X is less than 90, and the probability that X is between 105 and 110. 

      USE ANORDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       P, X1, X2 
! 
      CALL UMACH (2, NOUT) 
      X1 = (90.0-100.0)/15.0 
      P  = ANORDF(X1) 
      WRITE (NOUT,99998) P 
99998 FORMAT (’ The probability that X is less than 90 is ’, F6.4) 
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      X1 = (105.0-100.0)/15.0 
      X2 = (110.0-100.0)/15.0 
      P  = ANORDF(X2) - ANORDF(X1) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that X is between 105 and 110 is ’, & 
            F6.4) 
      END 

Output 
The probability that X is less than 90 is 0.2525 
The probability that X is between 105 and 110 is 0.1169 

Description 
Function ANORDF evaluates the distribution function, �, of a standard normal (Gaussian) 
random variable, that is, 

� �
2 / 21

2

x tx e dt
�

�

��

� � �  

The value of the distribution function at the point x is the probability that the random variable 
takes a value less than or equal to x.  

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0 
and variance of 1. The probability that a normal random variable with mean � and variance 	� is 
less than y is given by ANORDF evaluated at (y � �)/	.  

�(x) is evaluated by use of the complementary error function, erfc. (See ERFC in Chapter 5, 
“Error Funtions and Related Functions” of this manual.)) The relationship is:  

� � � �erfc / 2.0 / 2x x� � �  
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Figure 11-6   Standard Normal Distribution Function 

ANORIN 
This function evaluates the inverse of the standard normal (Gaussian) distribution function. 

Function Return Value 
ANORIN — Function value.   (Output)  

The probability that a standard normal random variable takes a value less than or equal 
to ANORIN is P. 

Required Arguments 
P — Probability for which the inverse of the normal distribution function is to be evaluated.   

(Input)  
P must be in the open interval (0.0, 1.0). 

FORTRAN 90 Interface 
Generic: ANORIN (P) 

Specific:  The specific interface names are S_ANORIN and D_ANORIN. 
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FORTRAN 77 Interface 
Single: ANORIN (P) 

Double: The double precision function name is DNORIN. 

Example 
In this example, we compute the point such that the probability is 0.9 that a standard normal 
random variable is less than or equal to this point. 

      USE ANORIN_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       P, X 
! 
      CALL UMACH (2, NOUT) 
      P = 0.9 
      X = ANORIN(P) 
      WRITE (NOUT,99999) X 
99999 FORMAT (’ The 90th percentile of a standard normal is ’, F6.4) 
      END 

Output 
The 90th percentile of a standard normal is 1.2816 

Description 
Function ANORIN evaluates the inverse of the distribution function, �, of a standard normal 
(Gaussian) random variable, that is, ANORIN(P) = ���(p), where 

� �
2 / 21

2

x tx e dt
�

�

��

� � �  

The value of the distribution function at the point x is the probability that the random variable 
takes a value less than or equal to x. The standard normal distribution has a mean of 0 and a 
variance of 1. 

References used to design this routine include Hart et al. (1968), Kinnucan and Kuki (1968), 
and Strecok (1968). 

BETDF 
This function evaluates the beta probability distribution function. 

Function Return Value 
BETDF — Probability that a random variable from a beta distribution having parameters PIN 

and QIN will be less than or equal to X.   (Output) 
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Required Arguments 
X — Argument for which the beta distribution function is to be evaluated.   (Input) 

PIN — First beta distribution parameter.   (Input)  
PIN must be positive. 

QIN — Second beta distribution parameter.   (Input)  
QIN must be positive. 

FORTRAN 90 Interface 
Generic: BETDF(X, PIN, QIN) 

Specific:  The specific interface names are S_BETDF and D_BETDF. 

FORTRAN 77 Interface 
Single: BETDF(X, PIN, QIN) 

Double: The double precision function name is DBETDF. 

Example 
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric 
distribution.) In this example, we find the probability that X is less than 0.6 and the probability 
that X is between 0.5 and 0.6. (Since X is a symmetric beta random variable, the probability that 
it is less than 0.5 is 0.5.) 

      USE BETDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       P, PIN, QIN, X 
! 
      CALL UMACH (2, NOUT) 
      PIN = 12.0 
      QIN = 12.0 
      X   = 0.6 
      P   = BETDF(X,PIN,QIN) 
      WRITE (NOUT,99998) P 
99998 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4) 
      X = 0.5 
      P = P - BETDF(X,PIN,QIN) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that X is between 0.5 and 0.6 is ’, & 
            F6.4) 
      END 

Output 
The probability that X is less than 0.6 is 0.8364 
The probability that X is between 0.5 and 0.6 is 0.3364 
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Comments 
Informational errors  
Type  Code 

   1    1 Since the input argument X is less than or equal to zero, the distribution  
   function is equal to zero at X. 

   1    2  Since the input argument X is greater than or equal to one, the distribution 
   function is equal to one at X. 

Description 
Function BETDF evaluates the distribution function of a beta random variable with parameters 
PIN and QIN. This function is sometimes called the incomplete beta ratio and, with p = PIN and 
q = QIN, is denoted by Ix(p, q). It is given by 

� �
� � � �

� �
� �

11

0
, 1

x qp
x

p q
I p q t t dt

p q
�

�

� �
� �

� �
�  

where 
(�) is the gamma function. The value of the distribution function Ix(p, q) is the 
probability that the random variable takes a value less than or equal to x. 

The integral in the expression above is called the incomplete beta function and is denoted by  
�x(p, q). The constant in the expression is the reciprocal of the beta function (the incomplete 
function evaluated at one) and is denoted by �(p, q). 

Function BETDF uses the method of Bosten and Battiste (1974b). 

 
Figure 11-7   Beta Distribution Function 
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BETIN 
This function evaluates the inverse of the beta distribution function. 

Function Return Value 
BETIN — Function value.   (Output)  

The probability that a beta random variable takes a value less than or equal to BETIN is 
P. 

Required Arguments 
P — Probability for which the inverse of the beta distribution function is to be evaluated.   

(Input)  
P must be in the open interval (0.0, 1.0). 

PIN — First beta distribution parameter.   (Input)  
PIN must be positive. 

QIN — Second beta distribution parameter.   (Input)  
QIN must be positive. 

FORTRAN 90 Interface 
Generic: BETIN(P, PIN, QIN) 

Specific:  The specific interface names are S_BETIN and D_BETIN. 

FORTRAN 77 Interface 
Single: BETIN(P, PIN, QIN) 

Double: The double precision function name is DBETIN. 

Example 
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric 
distribution.) In this example, we find the value x� such that the probability that X � x� is 0.9. 

      USE BETIN_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       P, PIN, QIN, X 
! 
      CALL UMACH (2, NOUT) 
      PIN = 12.0 
      QIN = 12.0 
      P   = 0.9 
      X   = BETIN(P,PIN,QIN) 
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      WRITE (NOUT,99999) X 
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’) 
      END 

Output 
X is less than 0.6299 with probability 0.9. 

Comments 
Informational error 
Type  Code  

   3     1  The value for the inverse Beta distribution could not be found in 100  
   iterations. The best approximation is used. 

Description 
The function BETIN evaluates the inverse distribution function of a beta random variable with 
parameters PIN and QIN, that is, with P = P, p = PIN, and q = QIN; it determines  
x (= BETIN(P, PIN, QIN) ), such that 

� � � �

� �
� �
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x qpp q
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p q
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where 
(�) is the gamma function. The probability that the random variable takes a value less 
than or equal to x is P. 

BNRDF 
This function evaluates the bivariate normal distribution function. 

Function Return Value 
BNRDF — Function value, the probability that a bivariate normal random variable with 

correlation RHO takes a value less than or equal to X and less than or equal to Y.   
(Output) 

Required Arguments 
X — One argument for which the bivariate normal distribution function is to be evaluated.   

(Input) 

Y — The other argument for which the bivariate normal distribution function is to be 
evaluated.   (Input) 

RHO — Correlation coefficient.   (Input) 

FORTRAN 90 Interface 
Generic: BNRDF(X, Y, RHO) 
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Specific:  The specific interface names are S_BNRDF and D_BNRDF. 

FORTRAN 77 Interface 
Single: BNRDF(X, Y, RHO) 

Double: The double precision function name is DBNRDF. 

Example 
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance 
matrix 

1.0 0.9
0.9 1.0

� �
� �
� �

 

In this example, we find the probability that X is less than �2.0 and Y is less than 0.0. 
      USE BNRDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       P, RHO, X, Y 
! 
      CALL UMACH (2, NOUT) 
      X   = -2.0 
      Y   = 0.0 
      RHO = 0.9 
      P   = BNRDF(X,Y,RHO) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that X is less than -2.0  and Y ’, & 
            ’is less than 0.0 is ’, F6.4) 
      END 

Output 
The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228 

Description 
Function BNRDF evaluates the distribution function F of a bivariate normal distribution with 
means of zero, variances of one, and correlation of RHO, that is, with � = RHO, and |�| < 1, 

� �
� �
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To determine the probability that U � u� and V � v�, where (U, V)T is a bivariate normal random 

variable with mean � = (�U, �V)T and variance-covariance matrix 
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transform (U, V)T to a vector with zero means and unit variances. The input to BNRDF would be 
X = (u� � �U)/	U, Y = (v� � �V) = 	V, and � = 	UV/(	U	V). 

Function BNRDF uses the method of Owen (1962, 1965). For |�| = 1, the distribution function is 
computed based on the univariate statistic, Z = min(x, y), and on the normal distribution function 
ANORDF (page 206).  

See Cooper (1968) for more information on the algorithm used. 

CHIDF 
This function evaluates the chi-squared distribution function. 

Function Return Value 
CHIDF — Function value, the probability that a chi-squared random variable takes a value 

less than or equal to CHSQ.   (Output) 

Required Arguments 
CHSQ — Argument for which the chi-squared distribution function is to be evaluated.   

(Input) 

DF — Number of degrees of freedom of the chi-squared distribution.   (Input)  
DF must be greater than or equal to 0.5. 

FORTRAN 90 Interface 
Generic: CHIDF(CHSQ, DF) 

Specific:  The specific interface names are S_CHIDF and D_CHIDF. 

FORTRAN 77 Interface 
Single: CHIDF(CHSQ, DF) 

Double: The double precision function name is DCHIDF. 

Example 
Suppose X is a chi-squared random variable with 2 degrees of freedom. In this example, we find 
the probability that X is less than 0.15 and the probability that X is greater than 3.0. 

      USE UMACH_INT 
      USE CHIDF_INT 
      INTEGER    NOUT 
      REAL       CHSQ, DF, P 
! 
      CALL UMACH (2, NOUT) 
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      DF   = 2.0 
      CHSQ = 0.15 
      P    = CHIDF(CHSQ,DF) 
      WRITE (NOUT,99998) P 
99998 FORMAT (’ The probability that chi-squared with 2 df is less ’, & 
             ’than 0.15 is ’, F6.4) 
      CHSQ = 3.0 
      P    = 1.0 - CHIDF(CHSQ,DF) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that chi-squared with 2 df is greater ’, & 
             ’than 3.0 is ’, F6.4) 
      END 

Output  
The probability that chi-squared with 2 df is less than 0.15 is 0.0723  
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231 

Comments 
Informational errors  
Type  Code 

   1    1  Since the input argument, CHSQ, is less than zero, the distribution function 
   is zero at CHSQ. 

   2    3 The normal distribution is used for large degrees of freedom. However, it 
   has produced underflow. Therefore, the probability, CHIDF, is set to zero. 

Description 
Function CHIDF evaluates the distribution function, F, of a chi-squared random variable with DF 
degrees of freedom, that is, with  = DF, and x = CHSQ, 

� �
� �
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where 
(�) is the gamma function. The value of the distribution function at the point x is the 
probability that the random variable takes a value less than or equal to x. 

For  > 65, CHIDF uses the Wilson-Hilferty approximation (Abramowitz and Stegun 1964, 
equation 26.4.17) to the normal distribution, and routine ANORDF (page 206) is used to evaluate 
the normal distribution function. 

For  � 65, CHIDF uses series expansions to evaluate the distribution function. If  
x < max (/2, 26), CHIDF uses the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it 
uses the asymptotic expansion 6.5.32 in Abramowitz and Stegun. 
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Figure 11-8   Chi-Squared Distribution Function 

CHIIN 
This function evaluates the inverse of the chi-squared distribution function. 

Function Return Value 
CHIIN — Function value.   (Output)  

The probability that a chi-squared random variable takes a value less than or equal to 
CHIIN is P. 

Required Arguments 
P — Probability for which the inverse of the chi-squared distribution function is to be 

evaluated.   (Input)  
P must be in the open interval (0.0, 1.0). 

DF — Number of degrees of freedom of the chi-squared distribution.   (Input)  
DF must be greater than or equal to 0.5. 

FORTRAN 90 Interface 
Generic: CHIIN(P, DF) 
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Specific:  The specific interface names are S_CHIIN and D_CHIIN. 

FORTRAN 77 Interface 
Single: CHIIN(P, DF) 

Double: The double precision function name is DCHIIN. 

Example 
In this example, we find the 99-th percentage points of a chi-squared random variable with 2 
degrees of freedom and of one with 64 degrees of freedom. 

      USE CHIIN_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       DF, P, X 
! 
      CALL UMACH (2, NOUT) 
      P  = 0.99 
      DF = 2.0 
      X  = CHIIN(P,DF) 
      WRITE (NOUT,99998) X 
99998 FORMAT (’ The 99-th percentage point of chi-squared with  2 df ’ & 
             , ’is ’, F7.3) 
      DF = 64.0 
      X  = CHIIN(P,DF) 
      WRITE (NOUT,99999) X 
99999 FORMAT (’ The 99-th percentage point of chi-squared with 64 df ’ & 
            , ’is ’, F7.3) 
      END 

Output 
The 99-th percentage point of chi-squared with 2 df is 9.210  
The 99-th percentage point of chi-squared with 64 df is 93.217 

Comments 
Informational errors 
Type  Code  

   4    1  Over 100 iterations have occurred without convergence. Convergence is 
   assumed. 

Description 
Function CHIIN evaluates the inverse distribution function of a chi-squared random variable 
with DF degrees of freedom; that is, with P = P and  = DF, it determines x (= CHIIN(P, DF) ), 
such that 

� �
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where 
(�) is the gamma function. The probability that the random variable takes a value less 
than or equal to x is P. 

For  < 40, CHIIN uses bisection (if  � 2 or P > 0.98) or regula falsi to find the point at which 
the chi-squared distribution function is equal to P. The distribution function is evaluated using 
routine CHIDF (page 215). 

For 40 �  < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, 
equation 26.4.18) to the normal distribution is used, and routine ANORIN (page 208) is used to 
evaluate the inverse of the normal distribution function. For  � 100, the ordinary Wilson-
Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used. 

CSNDF 
This function evaluates the noncentral chi-squared distribution function. 

Function Return Value 
CSNDF — Function value, the probability that a noncentral chi-squared random variable 

takes a value less than or equal to CHSQ.   (Output) 

Required Arguments 
CHSQ — Argument for which the noncentral chi-squared distribution function is to be 

evaluated.   (Input) 

DF — Number of degrees of freedom of the noncentral chi-squared distribution.   (Input)  
DF must be greater than or equal to 0.5 and less than or equal to 200,000. 

ALAM — The noncentrality parameter.   (Input)  
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000. 

FORTRAN 90 Interface 
Generic: CSNDF(CHSQ, DF, ALAM) 

Specific:  The specific interface names are S_CSNDF and D_CSNDF. 

FORTRAN 77 Interface 
Single: CSNDF(CHSQ, DF, ALAM) 

Double: The double precision function name is DCSNDF. 
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Example 
In this example, CSNDF is used to compute the probability that a random variable that follows 
the noncentral chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of 
freedom is less than or equal to 8.642. 

      USE CSNDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       ALAM, CHSQ, DF, P 
! 
      CALL UMACH (2, NOUT) 
      DF   = 2.0 
      ALAM = 1.0 
      CHSQ = 8.642 
      P    = CSNDF(CHSQ,DF,ALAM) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that a noncentral chi-squared random’, & 
            /, ’ variable with 2 df and noncentrality 1.0 is less’, & 
            /, ’ than 8.642 is ’, F5.3) 
      END 

Output 
The probability that a noncentral chi-squared random 
variable with 2 df and noncentrality 1.0 is less 
than 8.642 is 0.950 

Comments 
1. Informational errors 

Type Code  

   1    1  Since the input argument, CHSQ, is less than or equal to zero, the 
distribution function is zero at CHSQ. 

   3    2  Convergence was not obtained. The best approximation to the 
probability is returned. 

2. This subroutine sums terms of an infinite series of central chi-squared distribution 
functions weighted by Poisson terms. Summing terminates when either the current 
term is less than 10 * AMACH(4) times the current sum or when 1000 terms have been 
accumulated. In the latter case, a warning error is issued. 

Description 
Function CSNDF evaluates the distribution function of a noncentral chi-squared random variable 
with DF degrees of freedom and noncentrality parameter ALAM; that is, with  = DF, � = ALAM, 
and x = CHSQ, 
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where 
(�) is the gamma function. This is a series of central chi-squared distribution functions 
with Poisson weights. The value of the distribution function at the point x is the probability that 
the random variable takes a value less than or equal to x.  

The noncentral chi-squared random variable can be defined by the distribution function above, 
or alternatively and equivalently, as the sum of squares of independent normal random 
variables. If Yi have independent normal distributions with means �i and variances equal to one 
and  

2
1

n
ii

X Y
�

��  

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality 
parameter equal to  

2
1

n
ii

�
�

�  

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as 
the chi-squared distribution.  

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums 
forward and backward from that point, terminating when the additional terms are sufficiently 
small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8 
of Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-squared 
distribution functions. 

 
Figure 11-9   Noncentral Chi-squared Distribution Function 
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FDF 
This function evaluates the F distribution function. 

Function Return Value 
FDF — Function value, the probability that an F random variable takes a value less than or 

equal to the input F.   (Output) 

Required Arguments 
F — Argument for which the F distribution function is to be evaluated.   (Input) 

DFN — Numerator degrees of freedom.   (Input)  
DFN must be positive. 

DFD — Denominator degrees of freedom.   (Input)  
DFD must be positive. 

FORTRAN 90 Interface 
Generic: FDF(F, DFN, DFD) 

Specific:  The specific interface names are S_FDF and D_FDF. 

FORTRAN 77 Interface 
Single: FDF(F, DFN, DFD) 

Double: The double precision function name is DFDF. 

Example 
In this example, we find the probability that an F random variable with one numerator and one 
denominator degree of freedom is greater than 648. 

      USE FDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       DFD, DFN, F, P 
! 
      CALL UMACH (2, NOUT) 
      F   = 648.0 
      DFN = 1.0 
      DFD = 1.0 
      P   = 1.0 - FDF(F,DFN,DFD) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that an F(1,1) variate is greater ’, & 
            ’than 648 is ’, F6.4) 
      END 
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Output 
The probability that an F(1,1) variate is greater than 648 is 0.0250 

Comments 
Informational error  
Type  Code 

   1    3  Since the input argument F is not positive, the distribution function is zero 
   at F. 

Description 
Function FDF evaluates the distribution function of a Snedecor’s F random variable with DFN 
numerator degrees of freedom and DFD denominator degrees of freedom. The function is 
evaluated by making a transformation to a beta random variable and then using the routine 
BETDF (page 209). If X is an F variate with � and � degrees of freedom and  
Y = �X/(� + �X), then Y is a beta variate with parameters p = �/2 and q = �/2. The function 
FDF also uses a relationship between F random variables that can be expressed as follows: 

FDF(X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN) 

 
Figure 11-10   F Distribution Function 

FIN 
This function evaluates the inverse of the F distribution function. 
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Function Return Value 
FIN — Function value.   (Output)  

The probability that an F random variable takes a value less than or equal to 
FIN is P. 

Required Arguments 
P — Probability for which the inverse of the F distribution function is to be evaluated.   

(Input)  
P must be in the open interval (0.0, 1.0). 

DFN — Numerator degrees of freedom.   (Input)  
DFN must be positive. 

DFD — Denominator degrees of freedom.   (Input)  
DFD must be positive. 

FORTRAN 90 Interface 
Generic: FIN(P, DFN, DFD) 

Specific:  The specific interface names are S_FIN and D_FIN. 

FORTRAN 77 Interface 
Single: FIN(P, DFN, DFD) 

Double: The double precision function name is DFIN. 

Example 
In this example, we find the 99-th percentage point for an F random variable with 1 and 7 
degrees of freedom. 

      USE FIN_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       DFD, DFN, F, P 
! 
      CALL UMACH (2, NOUT) 
      P   = 0.99 
      DFN = 1.0 
      DFD = 7.0 
      F   = FIN(P,DFN,DFD) 
      WRITE (NOUT,99999) F 
99999 FORMAT (’ The F(1,7) 0.01 critical value is ’, F6.3) 
      END 
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Output 
The F(1,7) 0.01 critical value is 12.246 

Comments 
Informational error  
Type  Code 

   4     4  FIN is set to machine infinity since overflow would occur upon modifying 
   the inverse value for the F distribution with the result obtained from the 
   inverse BETA distribution. 

Description 
Function FIN evaluates the inverse distribution function of a Snedecor’s F random variable with 
DFN numerator degrees of freedom and DFD denominator degrees of freedom. The function is 
evaluated by making a transformation to a beta random variable and then using the routine 
BETIN (page 212). If X is an F variate with 1 and 2 degrees of freedom and  
Y = �X/(� + �X), then Y is a beta variate with parameters p = �/2 and q = �/2. If P � 0.5, 
FIN uses this relationship directly; otherwise, it also uses a relationship between F random 
variables that can be expressed as follows, using routine FDF (page 222), which is the F 
cumulative distribution function: 

FDF(F, DFN, DFD) = 1.0 - FDF(1.0/F, DFD, DFN) 

GAMDF 
This function evaluates the gamma distribution function. 

Function Return Value 
GAMDF — Function value, the probability that a gamma random variable takes a value less 

than or equal to X.   (Output) 

Required Arguments 
X — Argument for which the gamma distribution function is to be evaluated.   (Input) 

A — The shape parameter of the gamma distribution.   (Input)  
This parameter must be positive. 

FORTRAN 90 Interface 
Generic: GAMDF(X, A) 

Specific:  The specific interface names are S_GAMDF and D_GAMDF. 
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FORTRAN 77 Interface 
Single: GAMDF(X, A) 

Double: The double precision function name is DGAMDF. 

Example 
Suppose X is a gamma random variable with a shape parameter of 4. (In this case, it has an 
Erlang distribution since the shape parameter is an integer.) In this example, we find the 
probability that X is less than 0.5 and the probability that X is between 0.5 and 1.0. 

      USE GAMDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       A, P, X 
! 
      CALL UMACH (2, NOUT) 
      A = 4.0 
      X = 0.5 
      P = GAMDF(X,A) 
      WRITE (NOUT,99998) P 
99998 FORMAT (’ The probability that X is less than 0.5 is ’, F6.4) 
      X = 1.0 
      P = GAMDF(X,A) - P 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that X is between 0.5 and 1.0 is ’, & 
            F6.4) 
      END 

Output 
The probability that X is less than 0.5 is 0.0018  
The probability that X is between 0.5 and 1.0 is 0.0172 

Comments 
Informational error 
Type Code  

   1    2  Since the input argument X is less than zero, the distribution function is set 
   to zero. 

Description 
Function GAMDF evaluates the distribution function, F , of a gamma random variable with shape 
parameter a; that is, 

� �
� �
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where 
(�) is the gamma function. (The gamma function is the integral from 0 to � of the same 
integrand as above). The value of the distribution function at the point x is the probability that 
the random variable takes a value less than or equal to x. 
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The gamma distribution is often defined as a two-parameter distribution with a scale parameter 
b (which must be positive), or even as a three-parameter distribution in which the third 
parameter c is a location parameter. In the most general case, the probability density function 
over (c, �) is 
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1/1 at c b
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b a
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If T is such a random variable with parameters a, b, and c, the probability that T � t� can be 
obtained from GAMDF by setting X = (t� � c)/b. 

If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series expansion. Otherwise, a 
continued fraction expansion is used. (See Abramowitz and Stegun, 1964.) 

 
Figure 11-11   Gamma Distribution Function 

TDF 
This function evaluates the Student’s t distribution function. 

Function Return Value 
TDF — Function value, the probability that a Student’s t random variable takes a value less 

than or equal to the input T.   (Output) 
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Required Arguments 
T — Argument for which the Student’s t distribution function is to be evaluated.   (Input) 

DF — Degrees of freedom.   (Input)  
DF must be greater than or equal to 1.0. 

FORTRAN 90 Interface 
Generic: TDF(T, DF) 

Specific:  The specific interface names are S_TDF and D_TDF. 

FORTRAN 77 Interface 
Single: TDF(T, DF) 

Double: The double precision function name is DTDF. 

Example 
In this example, we find the probability that a t random variable with 6 degrees of freedom is 
greater in absolute value than 2.447. We use the fact that t is symmetric about 0. 

      USE TDF_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       DF, P, T 
! 
      CALL UMACH (2, NOUT) 
      T  = 2.447 
      DF = 6.0 
      P  = 2.0*TDF(-T,DF) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that a t(6) variate is greater ’, & 
            ’than 2.447 in’, /, ’ absolute value is ’, F6.4) 
      END 

Output 
The probability that a t(6) variate is greater than 2.447 in  
absolute value is 0.0500 

Description 
Function TDF evaluates the distribution function of a Student’s t random variable with DF 
degrees of freedom. If the square of T is greater than or equal to DF, the relationship of a t to an 
F random variable (and subsequently, to a beta random variable) is exploited; and routine 
BETDF (page 209) is used. Otherwise, the method described by Hill (1970) is used. If DF is not 
an integer, if DF is greater than 19, or if DF is greater than 200, a Cornish-Fisher expansion is 
used to evaluate the distribution function. If DF is less than 20 and ABS(T) is less than 2.0, a 
trigonometric series (see Abramowitz and Stegun, 1964, equations 26.7.3 and 26.7.4, with some 
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rearrangement) is used. For the remaining cases, a series given by Hill (1970) that converges 
well for large values of T is used. 

 
Figure 11-12   Student’s t Distribution Function 

TIN 
This function evaluates the inverse of the Student’s t distribution function. 

Function Return Value 
TIN — Function value.   (Output)  

The probability that a Student’s t random variable takes a value less than or equal to 
TIN is P. 

Required Arguments 
P — Probability for which the inverse of the Student’s t distribution function is to be 

evaluated.   (Input)  
P must be in the open interval (0.0, 1.0). 

DF — Degrees of freedom.   (Input)  
DF must be greater than or equal to 1.0. 
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FORTRAN 90 Interface 
Generic: TIN(P, DF) 

Specific:  The specific interface names are S_TIN and D_TIN. 

FORTRAN 77 Interface 
Single: TIN(P, DF) 

Double: The double precision function name is DTIN. 

Example 
In this example, we find the 0.05 critical value for a two-sided t test with 6 degrees of freedom. 

      USE TIN_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       DF, P, T 
! 
      CALL UMACH (2, NOUT) 
      P  = 0.975 
      DF = 6.0 
      T  = TIN(P,DF) 
      WRITE (NOUT,99999) T 
99999 FORMAT (’ The two-sided t(6) 0.05 critical value is ’, F6.3) 
      END 

Output 
The two-sided t(6) 0.05 critical value is 2.447 

Comments 
Informational error  
Type  Code 

   4    3  TIN is set to machine infinity since overflow would occur upon modifying 
   the inverse value for the F distribution with the result obtained from the 
   inverse � distribution. 

Description 
Function TIN evaluates the inverse distribution function of a Student’s t random variable with 
DF degrees of freedom. Let  = DF. If  equals 1 or 2, the inverse can be obtained in closed 
form; if  is between 1 and 2, the relationship of a t to a beta random variable is exploited and 
routine BETIN (page 212) is used to evaluate the inverse; otherwise the algorithm of Hill (1970) 
is used. For small values of  greater than 2, Hill’s algorithm inverts an integrated expansion in 
1/(1 + t�/) of the t density. For larger values, an asymptotic inverse Cornish-Fisher type 
expansion about normal deviates is used. 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 231 

 

 

 

TNDF 
This function evaluates the noncentral Student’s t distribution function. 

 Function Return Value 
TNDF — Function value, the probability that a noncentral Student’s t random variable takes a 

value less than or equal to T.   (Output) 

Required Arguments 
T — Argument for which the noncentral Student’s t distribution function is to be evaluated.   

(Input) 

IDF — Number of degrees of freedom of the noncentral Student’s t distribution.   (Input)  
IDF must be positive. 

DELTA — The noncentrality parameter.   (Input) 

FORTRAN 90 Interface 
Generic: TNDF(T, IDF, DELTA) 

Specific:  The specific interface names are S_TNDF and D_TNDF. 

FORTRAN 77 Interface 
Single: TNDF(T, IDF, DELTA) 

Double: The double precision function name is DTNDF. 

Example 
Suppose T is a noncentral t random variable with 6 degrees of freedom and noncentrality 
parameter 6. In this example, we find the probability that T is less than 12.0. (This can be 
checked using the table on page 111 of Owen, 1962, with � = 0.866, which yields � = 1.664.) 

      USE TNDF_INT 
      USE UMACH_INT 
      INTEGER    IDF, NOUT 
      REAL       DELTA, P, T 
! 
      CALL UMACH (2, NOUT) 
      IDF   = 6 
      DELTA = 6.0 
      T     = 12.0 
      P     = TNDF(T,IDF,DELTA) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that T is less than 12.0 is ’, F6.4) 
      END 
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Output 
The probability that T is less than 12.0 is 0.9501 

Description 
Function TNDF evaluates the distribution function F of a noncentral t random variable with IDF 
degrees of freedom and noncentrality parameter DELTA; that is, with  = IDF, � = DELTA , and  
t� = T, 
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where 
(�) is the gamma function. The value of the distribution function at the point t� is the 
probability that the random variable takes a value less than or equal to t�. 

The noncentral t random variable can be defined by the distribution function above, or 
alternatively and equivalently, as the ratio of a normal random variable and an independent chi-
squared random variable. If w has a normal distribution with mean � and variance equal to one, 
u has an independent chi-squared distribution with  degrees of freedom, and  

/
w
u �

 

then x has a noncentral t distribution with  degrees of freedom and noncentrality parameter �. 

The distribution function of the noncentral t can also be expressed as a double integral involving 
a normal density function (see, for example, Owen, 1962, page 108). The function TNDF uses 
the method of Owen (1962, 1965), which uses repeated integration by parts on that alternate 
expression for the distribution function. 
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Figure 11-13   Noncentral Student’s t Distribution Function 

GCDF 
This function evaluates a general continuous cumulative distribution function given ordinates of 
the density. 

Function Return Value 
GCDF — Function value, the probability that a random variable whose density is given in F 

takes a value less than or equal to X0.   (Output) 

Required Arguments 
X0 — Point at which the distribution function is to be evaluated.   (Input) 

X — Array containing the abscissas or the endpoints.   (Input)  
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1 or 3, 
X(1) contains the lower endpoint of the support of the distribution and X(2) is the upper 
endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order, the abscissas such 
that X(I) corresponds to F(I). 

F — Vector of length M containing the probability density ordinates corresponding to 
increasing abscissas.   (Input)  
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If IOPT = 1 or 3; for I = 1, 2, �, M, F(I) corresponds to  
X(1) + (I � 1) * (X(2) � X(1))/(M � 1); otherwise, F and X correspond one for one. 

Optional Arguments 
IOPT — Indicator of the method of interpolation.   (Input)  

Default: IOPT = 1.  

IOPT     Interpolation Method 
1  Linear interpolation with equally spaced abscissas. 
2  Linear interpolation with possibly unequally spaced abscissas. 
3  A cubic spline is fitted to equally spaced abscissas. 
4  A cubic spline is fitted to possibly unequally spaced abscissas. 

M — Number of ordinates of the density supplied.   (Input)  
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a 
curve is fitted through the ordinates (IOPT = 3 or 4). 
Default: M = size (F,1).  

FORTRAN 90 Interface 
Generic: GCDF (X0, X, F [,…]) 

Specific:  The specific interface names are S_GCDF and D_GCDF. 

FORTRAN 77 Interface 
Single: GCDF(X0, IOPT, M, X, F) 

Double: The double precision functin name is DGCDF. 

Example 
In this example, we evaluate the beta distribution function at the point 0.6. The probability 
density function of a beta random variable with parameters p and q is 

� �
� �

� � � �
� �

11 1 for 0 1qpp q
f x x x x

p q
�

�

� �
� � � �
� �

 

where 
(�) is the gamma function. The density is equal to 0 outside the interval [0, 1]. We 
compute a constant multiple (we can ignore the constant gamma functions) of the density at 300 
equally spaced points and input this information in X and F. Knowing that the probability 
density of this distribution is very peaked in the vicinity of 0.5, we could perhaps get a better fit 
by using unequally spaced abscissas, but we will keep it simple. Note that this is the same 
example as one used in the description of routine BETDF (page 209). The result from BETDF 
would be expected to be more accurate than that from GCDF since BETDF is designed 
specifically for this distribution. 
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      USE GCDF_INT 
      USE UMACH_INT 
      INTEGER    M 
      PARAMETER  (M=300) 
! 
      INTEGER    I, IOPT, NOUT 
      REAL       F(M), H, P, PIN1, QIN1, X(2), X0, XI 
! 
      CALL UMACH (2, NOUT) 
      X0   = 0.6 
      IOPT = 3 
!                                 Initializations for a beta(12,12) 
!                                 distribution. 
      PIN1 = 11.0 
      QIN1 = 11.0 
      XI   = 0.0 
      H    = 1.0/(M-1.0) 
      X(1) = XI 
      F(1) = 0.0 
      XI   = XI + H 
!                                 Compute ordinates of the probability 
!                                 density function. 
      DO 10  I=2, M - 1 
         F(I) = XI**PIN1*(1.0-XI)**QIN1 
         XI   = XI + H 
   10 CONTINUE 
      X(2) = 1.0 
      F(M) = 0.0 
      P    = GCDF(X0,X,F, IOPT=IOPT) 
      WRITE (NOUT,99999) P 
99999 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4) 
      END 

Output 
The probability that X is less than 0.6 is 0.8364 

Comments 
Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF.  
The reference is: 

G4DF(P, IOPT, M, X, F, WK, IWK) 

The arguments in addition to those of GCDF are: 

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4. 

IWK — Work vector of length M. 

Description 
Function GCDF evaluates a continuous distribution function, given ordinates of the probability 
density function. It requires that the range of the distribution be specified in X. For distributions 
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with infinite ranges, endpoints must be chosen so that most of the probability content is 
included. The function GCDF first fits a curve to the points given in X and F with either a 
piecewise linear interpolant or a C� cubic spline interpolant based on a method by Akima 
(1970). Function GCDF then determines the area, A, under the curve. (If the distribution were of 
finite range and if the fit were exact, this area would be 1.0.) Using the same fitted curve, GCDF 
next determines the area up to the point x� (= X0). The value returned is the area up to x� divided 
by A. Because of the scaling by A, it is not assumed that the integral of the density defined by X 
and F is 1.0.  

For most distributions, it is likely that better approximations to the distribution function are 
obtained when IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the 
function. It is also likely that better approximations can be obtained when the abscissas are 
chosen more densely over regions where the density and its derivatives (when they exist) are 
varying greatly. 

GCIN 
Evaluates the inverse of a general continuous cumulative distribution function given ordinates of 
the density. 

Required Arguments 
P — Probability for which the inverse of the distribution function is to be evaluated.   (Input)  

P must be in the open interval (0.0, 1.0). 

X — Array containing the abscissas or the endpoints.   (Input)  
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1 or 3, 
X(1) contains the lower endpoint of the support of the distribution and X(2) is the upper 
endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order, the abscissas such 
that X(I) corresponds to F(I). 

F — Vector of length M containing the probability density ordinates corresponding to 
increasing abscissas.   (Input)  
If IOPT = 1 or 3, for I = 1, 2, �, M, F(I) corresponds to  
X(1) + (I � 1) * (X(2) � X(1))/(M � 1); otherwise, F and X correspond one for one. 

GCIN — Function value.   (Output)  
The probability that a random variable whose density is given in F takes a value less 
than or equal to GCIN is P. 

Optional Arguments 
IOPT — Indicator of the method of interpolation.   (Input) 

Default: IOPT = 1.   

 IOPT      Interpolation Method 
1  Linear interpolation with equally spaced abscissas. 
2  Linear interpolation with possibly unequally spaced abscissas. 
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3  A cubic spline is fitted to equally spaced abscissas. 
4  A cubic spline is fitted to possibly unequally spaced abscissas. 

M — Number of ordinates of the density supplied.   (Input)  
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a 
curve is fitted through the ordinates (IOPT = 3 or 4). 
Default: M = size (F,1). 

FORTRAN 90 Interface 
Generic: CALL GCIN (P, X, F [,…]) 

Specific:  The specific interface names are S_GCIN and D_GCIN. 

FORTRAN 77 Interface 
Single: CALL GCIN(P, IOPT, M, X, F) 

Double: The double precision function name is DGCIN. 

Example 
In this example, we find the 90-th percentage point for a beta random variable with parameters 
12 and 12. The probability density function of a beta random variable with parameters p and q is  

� �
� �

� � � �
� �

11 1 for 0 1qpp q
f x x x x

p q
�
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� �
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where 
(�) is the gamma function. The density is equal to 0 outside the interval [0, 1]. With  
p = q, this is a symmetric distribution. Knowing that the probability density of this distribution 
is very peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally spaced 
abscissas, but we will keep it simple and use 300 equally spaced points. Note that this is the 
same example that is used in the description of routine BETIN (page 212). The result from 
BETIN would be expected to be more accurate than that from GCIN since BETIN is designed 
specifically for this distribution. 

      USE GCIN_INT 
      USE UMACH_INT 
      USE BETA_INT 
      INTEGER    M 
      PARAMETER  (M=300) 
! 
      INTEGER    I, IOPT, NOUT 
      REAL       C, F(M), H, P, PIN, PIN1, QIN, QIN1, & 
                X(2), X0, XI 
! 
      CALL UMACH (2, NOUT) 
      P    = 0.9 
      IOPT = 3 
!                                 Initializations for a beta(12,12) 
!                                 distribution. 
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      PIN  = 12.0 
      QIN  = 12.0 
      PIN1 = PIN - 1.0 
      QIN1 = QIN - 1.0 
      C    = 1.0/BETA(PIN,QIN) 
      XI   = 0.0 
      H    = 1.0/(M-1.0) 
      X(1) = XI 
      F(1) = 0.0 
      XI   = XI + H 
!                                 Compute ordinates of the probability 
!                                 density function. 
      DO 10  I=2, M - 1 
         F(I) = C*XI**PIN1*(1.0-XI)**QIN1 
         XI   = XI + H 
   10 CONTINUE 
      X(2) = 1.0 
      F(M) = 0.0 
      X0   = GCIN(P,X,F, IOPT=IOPT) 
      WRITE (NOUT,99999) X0 
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’) 
      END 

Output 
X is less than 0.6304 with probability 0.9. 

Comments 
Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The reference is 

G3IN(P, IOPT, M, X, F, WK, IWK) 

The arguments in addition to those of GCIN are: 

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4. 

IWK — Work vector of length M. 

Description 
Function GCIN evaluates the inverse of a continuous distribution function, given ordinates of the 
probability density function. The range of the distribution must be specified in X. For 
distributions with infinite ranges, endpoints must be chosen so that most of the probability 
content is included.  

The function GCIN first fits a curve to the points given in X and F with either a piecewise linear 
interpolant or a C� cubic spline interpolant based on a method by Akima (1970). Function GCIN 
then determines the area, A, under the curve. (If the distribution were of finite range and if the fit 
were exact, this area would be 1.0.) It next finds the maximum abscissa up to which the area is 
less than AP and the minimum abscissa up to which the area is greater than AP. The routine then 
interpolates for the point corresponding to AP. Because of the scaling by A, it is not assumed 
that the integral of the density defined by X and F is 1.0.  
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For most distributions, it is likely that better approximations to the distribution function are 
obtained when IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the 
function. It is also likely that better approximations can be obtained when the abscissas are 
chosen more densely over regions where the density and its derivatives (when they exist) are 
varying greatly. 



 

 
 

240 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions 

 

 

 



 

 
 

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 241 

 

 

 

Chapter 12: Mathieu Functions 

Routines 
Evaluate the eigenvalues 
for the periodic Mathieu functions........................................MATEE 241 
Evaluate even, periodic Mathieu functions ......................... MATCE 244 
Evaluate odd, periodic Mathieu functions............................MATSE 248 

Usage Notes 
Mathieu’s equation is  

� �
2

2 2 cos 2 0d y a q v y
dv

� � �  

It arises from the solution, by separation of variables, of Laplace’s equation in elliptical 
coordinates, where a is the separation constant and q is related to the ellipticity of the coordinate 
system. If we let t = cos v, then Mathieu’s equation can be written as 

� � � �
2

2 2
21 2 4 0d y dyt t a q qt y

dtdt
� � � � � �  

For various physically important problems, the solution y(t) must be periodic. There exist, for 
particular values of a, periodic solutions to Mathieu’s equation of period k� for any integer k. 
These particular values of a are called eigenvalues or characteristic values. They are computed 
using the routine MATEE (page 241).  

There exist sequences of both even and odd periodic solutions to Mathieu’s equation. The even 
solutions are computed by MATCE (page 244). The odd solutions are computed by MATSE (page 
246). 

MATEE 
Evaluates the eigenvalues for the periodic Mathieu functions. 

Required Arguments 
Q — Parameter.   (Input) 
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ISYM — Symmetry indicator.   (Input)  

 ISYM   Meaning 
0 Even  
1 Odd 

IPER — Periodicity indicator.   (Input) 

 ISYM   Period 
0            pi  
1 2 * pi 

EVAL — Vector of length N containing the eigenvalues.   (Output) 

Optional Arguments 
N — Number of eigenvalues to be computed.   (Input) 

Default: N = size (EVAL,1) 

FORTRAN 90 Interface 
Generic: CALL MATEE (Q, ISYM, IPER, EVAL [,…]) 

Specific:  The specific interface names are S_MATEE and D_MATEE. 

FORTRAN 77 Interface 
Single: CALL MATEE (Q, N, ISYM, IPER, EVAL) 

Double: The double precision function name is DMATEE. 

Example 
In this example, the eigenvalues for q = 5, even symmetry, and � periodicity are computed and 
printed. 

      USE UMACH_INT 
      USE MATEE_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
! 
      INTEGER    ISYM, IPER, K, NOUT 
      REAL       Q, EVAL(N) 
!                                 Compute 
      Q    = 5.0 
      ISYM = 0 
      IPER = 0 
      CALL MATEE (Q, ISYM, IPER, EVAL) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
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      DO 10  K=1, N 
         WRITE (NOUT,99999) 2*K-2, EVAL(K) 
   10 CONTINUE 
99999 FORMAT (’ Eigenvalue’, I2, ’ = ’, F9.4) 
      END 

Output  
Eigenvalue 0 =   -5.8000 
Eigenvalue 2 =    7.4491 
Eigenvalue 4 =   17.0966 
Eigenvalue 6 =   36.3609 
Eigenvalue 8 =   64.1989 
Eigenvalue10 =  100.1264 
Eigenvalue12 =  144.0874 
Eigenvalue14 =  196.0641 
Eigenvalue16 =  256.0491 
Eigenvalue18 =  324.0386 

Comments 
1. Workspace may be explicitly provided, if desired, by use of M2TEE/DM2TEE. The 

reference is 

CALL M2TEE (Q, N, ISYM, IPER, EVAL, NORDER, WORKD, WORKE) 

The additional arguments are as follows: 

NORDER — Order of the matrix whose eigenvalues are computed.   (Input) 

WORKD — Work vector of size NORDER.   (Input/Output)  
If EVAL is large enough then EVAL and WORKD can be the same vector. 

WORKE — Work vector of size NORDER.   (Input/Output) 

2. Informational error 
Type Code 

   4    1 The iteration for the eigenvalues did not converge. 

Description 
The eigenvalues of Mathieu’s equation are computed by a method due to Hodge (1972). The 
desired eigenvalues are the same as the eigenvalues of the following symmetric, tridiagonal 
matrix: 

0 0

0 2 2

2 4 4

4 6

0 0
0

0
0 0

W qX
qX W qX

qX W qX
qX W
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Here, 

� �
2

2 0
1

2 1

m

m m

mX

W m V

�� � � �
� �
��

� � � � �� 	
 �

                       otherwise
if ISYM IPER

IPER IPER ISYM

 

where 

if 1, 0 and 0
if R 1, 1 and 0

0                                    
m

q m
V q m

� � � ��
�

� � � � ��
�
� otherwise

IPER ISYM

IPE ISYM  

Since the above matrix is semi-infinite, it must be truncated before its eigenvalues can be 
computed. Routine MATEE computes an estimate of the number of terms needed to get accurate 
results. This estimate can be overridden by calling M2TEE with NORDER equal to the desired 
order of the truncated matrix. 

The eigenvalues of this matrix are computed using the routine EVLSB found in the IMSL 
MATH/LIBRARY Chapter 2. 

MATCE 
Evaluates a sequence of even, periodic, integer order, real Mathieu functions. 

Required Arguments 
X — Argument for which the sequence of Mathieu functions is to be evaluated.   (Input) 

Q — Parameter.   (Input)  
The parameter Q must be positive. 

N — Number of elements in the sequence.   (Input) 

CE — Vector of length N containing the values of the function through the series.   (Output) 
CE(I) contains the value of the Mathieu function of order I � 1 at X for I = 1 to N. 

FORTRAN 90 Interface 
Generic: CALL MATCE (X, Q, N, CE) 

Specific:  The specific interface names are S_MATCE and D_MATCE. 

FORTRAN 77 Interface 
Single: CALL MATCE (X, Q, N, CE) 

Double: The double precision name is DMATCE. 
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Example 1 
In this example, cen(x = �/4, q = 1), n = 0, �, 9 is computed and printed. 

      USE CONST_INT 
      USE MATCE_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
 
! 
      INTEGER    K, NOUT 
      REAL       CE(N), Q, X 
!                                 Compute 
      Q = 1.0 
      X = CONST(’PI’) 
      X = 0.25* X 
      CALL MATCE (X, Q, N, CE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K-1, X, Q, CE(K) 
   10 CONTINUE 
99999 FORMAT (’ ce sub’, I2, ’ (’, F6.3, ’,’, F6.3, ’) = ’, F6.3) 
      END 

Output 
ce sub 0 ( 0.785, 1.000) =  0.654 
ce sub 1 ( 0.785, 1.000) =  0.794 
ce sub 2 ( 0.785, 1.000) =  0.299 
ce sub 3 ( 0.785, 1.000) = -0.555 
ce sub 4 ( 0.785, 1.000) = -0.989 
ce sub 5 ( 0.785, 1.000) = -0.776 
ce sub 6 ( 0.785, 1.000) = -0.086 
ce sub 7 ( 0.785, 1.000) =  0.654 
ce sub 8 ( 0.785, 1.000) =  0.998 
ce sub 9 ( 0.785, 1.000) =  0.746 

Comments 
1. Workspace may be explicitly provided, if desired, by use of M2TCE/DM2TCE. The 

reference is 

CALL M2TCE (X, Q, N, CE, NORDER, NEEDEV, EVAL0, EVAL1, COEF, 
WORK, BSJ) 

The additional arguments are as follows: 

NORDER — Order of the matrix used to compute the eigenvalues.   (Input)  
It must be greater than N. Routine MATSE computes NORDER by the following 
call to M3TEE. 

 CALL M3TEE(Q, N, NORDER) 
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NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed.   (Input) 

EVAL0 — Real work vector of length NORDER containing the eigenvalues computed 
by MATEE with ISYM = 0 and IPER = 0.   (Input/Output)  
If NEEDEV is .TRUE., then EVAL0 is computed by M2TCE; otherwise, it must be 
set as an input value. 

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed 
by MATEE with ISYM = 0 and IPER = 1.   (Input/Output)  
If NEEDEV is .TRUE., then EVAL1 is computed by M2TCE; otherwise, it must be 
set as an input value. 

COEF — Real work vector of length NORDER + 4. 

WORK — Real work vector of length NORDER + 4. 

BSJ — Real work vector of length 2 * NORDER � 2. 

2. Informational error  
Type  Code 

   4    1 The iteration for the eigenvalues did not converge. 

Description 
The eigenvalues of Mathieu’s equation are computed using MATEE (page 241). The function 
values are then computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), 
equation 8.661. 

Additional Examples 

Example 2 
In this example, we compute cen(x, q) for various values of n and x and a fixed value of q. To 
avoid having to recompute the eigenvalues, which depend on q but not on x, we compute the 
eigenvalues once and pass in their value to M2TCE. The eigenvalues are computed using MATEE 
(page 241). The routine M3TEE is used to compute NORDER based on Q and N. The arrays BSJ, 
COEF and WORK are used as temporary storage in M2TCE. 

      USE IMSL_LIBRARIES 
 
!                                 Declare variables 
      INTEGER    MAXORD, N, NX 
      PARAMETER  (MAXORD=100, N=4, NX=5) 
! 
      INTEGER    ISYM, K, NORDER, NOUT 
      REAL       BSJ(2*MAXORD-2), CE(N), COEF(MAXORD+4) 
      REAL       EVAL0(MAXORD), EVAL1(MAXORD), PI, Q, WORK(MAXORD+4), X 
!                                 Compute NORDER 
      Q = 1.0 
      CALL M3TEE (Q, N, NORDER) 
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! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT, 99997) NORDER 
!                                 Compute eigenvalues 
      ISYM = 0 
      CALL MATEE (Q, ISYM, 0, EVAL0) 
      CALL MATEE (Q, ISYM, 1, EVAL1) 
! 
      PI = CONST(’PI’) 
!                                 Compute function values 
      WRITE (NOUT, 99998) 
      DO 10  K=0, NX 
         X = (K*PI)/NX 
         CALL M2TCE(X, Q, N, CE, NORDER, .FALSE., EVAL0, EVAL1, & 
          COEF, WORK, BSJ) 
         WRITE (NOUT,99999) X, CE(1), CE(2), CE(3), CE(4) 
   10 CONTINUE 
! 
99997 FORMAT (’ NORDER = ’, I3) 
99998 FORMAT (/, 28X, ’Order’, /, 20X, ’0’, 7X, ’1’, 7X, & 
          ’2’, 7X, ’3’) 
99999 FORMAT (’ ce(’, F6.3, ’) = ’, 4F8.3) 
      END 

Output 
NORDER =  23 
                            Order 
                    0       1       2       3 
ce( 0.000) =    0.385   0.856   1.086   1.067 
ce( 0.628) =    0.564   0.838   0.574  -0.131 
ce( 1.257) =    0.926   0.425  -0.575  -0.820 
ce( 1.885) =    0.926  -0.425  -0.575   0.820 
ce( 2.513) =    0.564  -0.838   0.574   0.131 
ce( 3.142) =    0.385  -0.856   1.086  -1.067 
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Figure 12-1   Plot of cen(x, q = 1) 

MATSE 
Evaluates a sequence of odd, periodic, integer order, real Mathieu functions. 

Required Arguments 
X — Argument for which the sequence of Mathieu functions is to be evaluated.   (Input) 

Q — Parameter.   (Input)  
The parameter Q must be positive. 

N — Number of elements in the sequence.   (Input) 

SE — Vector of length N containing the values of the function through the 
series.   (Output)  
SE(I) contains the value of the Mathieu function of order I at X for I = 1 to N. 

FORTRAN 90 Interface 
Generic: CALL MATSE (X, Q, N, SE) 

Specific:  The specific interface names are S_MATSE and D_MATSE. 
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FORTRAN 77 Interface 
Single: CALL MATSE (X, Q, N, SE) 

Double: The double precision function name is DMATSE. 

Example 
In this example, sen(x = �/4, q = 10), n = 0, �, 9 is computed and printed. 

 
Figure 12-2   Plot of sen(x, q = 1) 

      USE CONST_INT 
      USE MATSE_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=10) 
! 
      INTEGER    K, NOUT 
      REAL       SE(N), Q, X 
!                                 Compute 
      Q = 10.0 
      X = CONST(’PI’) 
      X = 0.25* X 
      CALL MATSE (X, Q, N, SE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      DO 10  K=1, N 
         WRITE (NOUT,99999) K-1, X, Q, SE(K) 
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   10 CONTINUE 
99999 FORMAT (’ se sub’, I2, ’ (’, F6.3, ’,’, F6.3, ’) = ’, F6.3) 
      END 

Output 
se sub 0 ( 0.785,10.000) =  0.250 
se sub 1 ( 0.785,10.000) =  0.692 
se sub 2 ( 0.785,10.000) =  1.082 
se sub 3 ( 0.785,10.000) =  0.960 
se sub 4 ( 0.785,10.000) =  0.230 
se sub 5 ( 0.785,10.000) = -0.634 
se sub 6 ( 0.785,10.000) = -0.981 
se sub 7 ( 0.785,10.000) = -0.588 
se sub 8 ( 0.785,10.000) =  0.219 
se sub 9 ( 0.785,10.000) =  0.871 

Comments 
1. Workspace may be explicitly provided, if desired, by use of M2TSE/DM2TSE. The 

reference is 

CALL M2TSE (X, Q, N, SE, NORDER, NEEDEV, EVAL0,  
EVAL1, COEF, WORK, BSJ) 

The additional arguments are as follows: 

NORDER — Order of the matrix used to compute the eigenvalues.   (Input)  
It must be greater than N. Routine MATSE computes NORDER by the following 
call to M3TEE.  

 CALL M3TEE (Q, N, NORDER) 

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed.   (Input) 

EVAL0 — Real work vector of length NORDER containing the eigenvalues computed 
by MATEE with ISYM = 1 and IPER = 0.   (Input/Output)  
If NEEDEV is .TRUE., then EVAL0 is computed by M2TSE; otherwise, it must be 
set as an input value. 

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed 
by MATEE with ISYM = 1 and IPER = 1.   (Input/Output) 
If NEEDEV is .TRUE., then EVAL1 is computed by M2TSE; otherwise, it must be 
set as an input value. 

COEF — Real work vector of length NORDER + 4. 

WORK — Real work vector of length NORDER + 4. 

BSI — Real work vector of length 2 * NORDER + 1. 
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2. Informational error  
Type  Code  

   4    1 The iteration for the eigenvalues did not converge. 

Description 
The eigenvalues of Mathieu’s equation are computed using MATEE (page 241). The function 
values are then computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), 
equation 8.661. 
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Chapter 13: Miscellaneous 
Functions 

Routines 
Spence dilogarithm ..............................................................SPENC 255 
Initialize a Chebyshev series ..................................................INITS 256 
Evaluate a Chebyshev series .............................................. CSEVL 257 

Usage Notes 
Many functions of one variable can be numerically computed using a Chebyshev series, 

� � � �0
1 1n nn

f x A T x x�

�

� � � ��  

A Chebyshev series is better for numerical computation than a Taylor series since the Chebyshev 
polynomials, Tn(x), are better behaved than the monomials, xn.  

A Taylor series can be converted into a Chebyshev series using an algorithm of Fields and Wimp, 
(see Luke (1969), page 292).  

Let  

� � 0
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nn
f x x�

�

�

��  

be a Taylor series expansion valid for |x| < 1. Define 
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where (a)k = 
(a + k)/
(a) is Pochhammer’s symbol. 
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(Note that (a)k���� = (a + k)(a)k). Then, 

� � � � � �* *1
02 1

0 1n nn
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� � � ��  

where 

� �*
nT x  

are the shifted Chebyshev polynomials, 

� � � �* * 2 1n nT x T x� �  

In an actual implementation of this algorithm, the number of terms in the Taylor series and the 
number of terms in the Chebyshev series must both be finite. If the Taylor series is an alternating 
series, then the error in using only the first M terms is less than |�M � � |. The error in truncating the 
Chebyshev series to N terms is no more than  

1 nn N
c�

� �
�  

If the Taylor series is valid on |x| < R, then we can write  

� � � �0
/ nn

nn
f x R x R�

�

�

��  

and use �nRn instead of �n in the algorithm to obtain a Chebyshev series in x/R valid for 0 < x < R. 
Unfortunately, if R is large, then the Chebyshev series converges more slowly.  

The Taylor series centered at zero can be shifted to a Taylor series centered at c. Let t = x � c, so 
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By interchanging the order of the double sum, it can easily be shown that 
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By combining scaling and shifting, we can obtain a Chebyshev series valid over any interval [a, b] 
for which the original Taylor series converges.  

The algorithm can also be applied to asymptotic series, 

� � 0
~  as n

nn
f x x x�

�
�

�

���  

by treating the series truncated to M terms as a polynomial in 1/x. The asymptotic series is usually 
divergent; but if it is alternating, the error in truncating the series to M terms is less than |�M � 

�|/RM � � for R � x < �. Normally, as M increases, the error initially decreases to a small value and 
then increases without a bound. Therefore, there is a limit to the accuracy that can be obtained by 
increasing M. More accuracy can be obtained by increasing R. The optimal value of M depends on 
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both the sequence �j and R. For R fixed, the optimal value of M can be found by finding the value 

of M at which |�M|/RM starts to increase.  

Since we want a routine accurate to near machine precision, the algorithm must be implemented 
using somewhat higher precision than is normally used. This is best done using a symbolic 
computation package. 

SPENC 
This function evaluates a form of Spence’s integral. 

Function Return Value 
SPENC — Function value.   (Output) 

Required Arguments 
X — Argument for which the function value is desired.   (Input) 

FORTRAN 90 Interface 
Generic: SPENC (X) 

Specific:  The specific interface names are S_SPENC and D_SPENC. 

FORTRAN 77 Interface 
Single: SPENC (X) 

Double: The double precision function name is DSPENC. 

Example 
In this example, s(0.2) is computed and printed. 

      USE SPENC_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    NOUT 
      REAL       VALUE, X 
!                                 Compute 
      X     = 0.2 
      VALUE = SPENC(X) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, VALUE 
99999 FORMAT (’ SPENC(’, F6.3, ’) = ’, F6.3) 
      END 
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Output 
SPENC( 0.200) = 0.211 

Description 
The Spence dilogarithm function, s(x), is defined to be 

� �
0

ln 1x y
s x dy

y
�

� ��  

For |x| � 1, the uniformly convergent expansion 

� � 21

k

k

xs x
k

�

�
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is valid.  

Spence’s function can be used to evaluate much more general integral forms. For example,  
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INITS 
This function Initializes the orthogonal series so the function value is the number of terms needed 
to insure the error is no larger than the requested accuracy. 

Function Return Value 
INITS — Number of terms needed to insure the error is no larger than ETA.   (Output) 

Required Arguments 
OS — Vector of length NOS containing coefficients in an orthogonal series.   (Input) 

NOS — Number of coefficients in OS.   (Input) 

ETA — Requested accuracy of the series.   (Input)  
Contrary to the usual convention, ETA is a REAL argument to INITDS. 

FORTRAN 90 Interface 
Generic: INITS(OS, NOS, ETA) 

Specific:  The specific interface names are INITS and INITDS. 

FORTRAN 77 Interface 
Single: INITS(OS, NOS, ETA) 
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Double: The double precision function name is INITDS. 

Comments 
ETA will usually be chosen to be one tenth of machine precision. 

Description 
Function INITS initializes a Chebyshev series. The function INITS returns the number of terms 
in the series s of length n needed to insure that the error of the evaluated series is everywhere 
less than ETA. The number of input terms n must be greater than 1, so that a series of at least one 
term and an error estimate can be obtained. In addition, ETA should be larger than the absolute 
value of the last coefficient. If it is not, then all the terms of the series must be used, and no error 
estimate is available. 

CSEVL 
This function evaluates the N-term Chebyshev series. 

Function Return Value 
CSEVL — Function value.   (Output) 

Required Arguments 
X — Argument at which the series is to be evaluated.   (Input) 

CS — Vector of length N containing the terms of a Chebyshev series.   (Input)  
In evaluating CS, only half of the first coefficient is summed. 

Optional Arguments 
N — Number of terms in the vector CS.   (Input)| 

Default: N = size(CS, 1) 

FORTRAN 90 Interface 
Generic: CSEVL(X, CS [,…]) 

Specific:  The specific interface names are S_CSEVL and D_CSEVL. 

FORTRAN 77 Interface 
Single: CSEVL(X, CS, N) 

Double: The double precision function name is DCSEVL. 
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Comments 
Informational error  
Type  Code 

   3    7  X is outside the interval (�1.1, +1.1) 

Description 
Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the array s of 
length n at the point x. The argument x must lie in the interval 
[�1, +1]. Other finite intervals can be linearly transformed to this canonical interval. Also, the 
number of terms in the series must be greater than zero but less than 1000. This latter limit is 
purely arbitrary; it is imposed in order to guard against the possibility of a floating point number 
being passed as an argument for n. 
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User Errors.................................................................................259 
Machine-Dependent Constants ................................................. 263 
Reserved Names .......................................................................263 
Deprecated and Deleted Routines ............................................ 270 
Automatic Workspace Allocation ...............................................270 

User Errors 
IMSL routines attempt to detect user errors and handle them in a way that provides as much in-
formation to the user as possible. To do this, we recognize various levels of severity of errors, and 
we also consider the extent of the error in the context of the purpose of the routine; a trivial error 
in one situation may be serious in another. IMSL routines attempt to report as many errors as they 
can reasonably detect. Multiple errors present a difficult problem in error detection because input 
is interpreted in an uncertain context after the first error is detected. 

What Determines Error Severity 
In some cases, the user’s input may be mathematically correct, but because of limitations of the 
computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. 
In this case, the assessed degree of accuracy determines the severity of the error. In cases where 
the routine computes several output quantities, if some are not computable but most are, an error 
condition exists. The severity depends on an assessment of the overall impact of the error. 

Terminal errors 
If the user’s input is regarded as meaningless, such as N = �1 when “N” is the number of equations, 
the routine prints a message giving the value of the erroneous input argument(s) and the reason for 
the erroneous input. The routine will then cause the user’s program to stop. An error in which the 
user’s input is meaningless is the most severe error and is called a terminal error. Multiple 
terminal error messages may be printed from a single routine. 

Informational errors 
In many cases, the best way to respond to an error condition is simply to correct the input and 
rerun the program. In other cases, the user may want to take actions in the program itself based on 
errors that occur. An error that may be used as the basis for corrective action within the program is 
called an informational error. If an informational error occurs, a user-retrievable code is set. A 
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routine can return at most one informational error for a single reference to the routine. The codes 
for the informational error codes are printed in the error messages. 

Other errors 
In addition to informational errors, IMSL routines issue error messages for which no user-
retrievable code is set. Multiple error messages for this kind of error may be printed. These errors, 
which generally are not described in the documentation, include terminal errors as well as less 
serious errors. Corrective action within the calling program is not possible for these errors. 

Kinds of Errors and Default Actions 
Five levels of severity of errors are defined in the MATH/LIBRARY Special Functions. Each 
level has an associated PRINT attribute and a STOP attribute. These attributes have default 
settings (YES or NO), but they may also be set by the user. The purpose of having multiple error 
severity levels is to provide independent control of actions to be taken for errors of different 
severity. Upon return from an IMSL routine, exactly one error state exists. (A code 0 “error” is no 
informational error.) Even if more than one informational error occurs, only one message is 
printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the 
calling program is reasonable or necessary result in the printing of multiple messages (if the 
PRINT attribute for their severity level is YES). Errors of any of the severity levels except level 5 
may be informational errors. 

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to 
provide information about the computations. Default attributes: PRINT=NO, 
STOP=NO 

Level 2: Alert. An alert indicates that the user should be advised about events occurring in 
the software. Default attributes: PRINT=NO, STOP=NO 

Level 3: Warning. A warning indicates the existence of a condition that may require 
corrective action by the user or calling routine. A warning error may be issued because 
the results are accurate to only a few decimal places, because some of the output may 
be erroneous but most of the output is correct, or because some assumptions underlying 
the analysis technique are violated. Often no corrective action is necessary and the 
condition can be ignored. Default attributes: PRINT=YES, STOP=NO 

Level 4: Fatal. A fatal error indicates the existence of a condition that may be serious. In 
most cases, the user or calling routine must take corrective action to recover. Default 
attributes: PRINT=YES, STOP=YES 

Level 5: Terminal. A terminal error is serious. It usually is the result of an incorrect 
specification, such as specifying a negative number as the number of equations. These 
errors may also be caused by various programming errors impossible to diagnose 
correctly in FORTRAN. The resulting error message may be perplexing to the user. In 
such cases, the user is advised to compare carefully the actual arguments passed to the 
routine with the dummy argument descriptions given in the documentation. Special 
attention should be given to checking argument order and data types. 
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A terminal error is not an informational error because corrective action within the program is 
generally not reasonable. In normal usage, execution is terminated immediately when a 
terminal error occurs. Messages relating to more than one terminal error are printed if they 
occur. Default attributes: PRINT=YES, STOP=YES 

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error 
Handling.” 

Errors in Lower-Level Routines 
It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of 
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the 
lower-level routine cannot pass the information up to the original user-called routine, then a 
traceback of the routines is produced. The only common situation in which this can occur is when 
an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine. 

Routines for Error Handling 
There are three ways in which the user may interact with the IMSL error handling system: (1) to 
change the default actions, (2) to retrieve the integer code of an informational error so as to take 
corrective action, and (3) to determine the severity level of an error. The routines to use are 
ERSET, IERCD, and N1RTY, respectively. 

ERSET 
Change the default printing or stopping actions when errors of a particular error severity level 
occur. 

Required Arguments 
IERSVR — Error severity level indicator.   (Input) 

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for 
errors of the specified severity level. 

IPACT — Printing action.   (Input) 

 IPACT Action 

�1  Do not change current setting(s). 

  0  Do not print. 

  1  Print. 

  2  Restore the default setting(s). 

ISACT — Stopping action.   (Input) 

 ISACT Action 

�1  Do not change current setting(s). 
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  0  Do not stop. 

  1  Stop. 

  2  Restore the default setting(s). 

FORTRAN 90 Interface 
Generic: CALL ERSET (IERSVR, IPACT, ISACT) 

Specific:  The specific interface name is ERSET. 

FORTRAN 77 Interface 
Single: CALL ERSET (IERSVR, IPACT, ISACT) 

IERCD and N1RTY 
The last two routines for interacting with the error handling system, IERCD and N1RTY, are 
INTEGER functions and are described in the following material. 

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be 
used in the following way: 

ICODE = IERCD( ) 

The function retrieves the code set by the most recently called IMSL routine. 

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the 
following way: 

ITYPE = N1RTY(1) 

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3 
and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are 
informational errors (IERCD( ) � 0), ITYPE = 6 errors are not informational errors (IERCD( ) = 0). 

For software developers requiring additional interaction with the IMSL error handling system, see 
Aird and Howell (1991). 

Examples 

Changes to Default Actions 
Some possible changes to the default actions are illustrated below. The default actions remain in 
effect for the kinds of errors not included in the call to ERSET. 

To turn off printing of warning error messages: 
CALL ERSET (3, 0, �1) 

To stop if warning errors occur: 
CALL ERSET (3, �1, 1) 
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To print all error messages: 
CALL ERSET (0, 1, �1) 

To restore all default settings: 
CALL ERSET (0, 2, 2) 

Machine-Dependent Constants 
The function subprograms in this section return machine-dependent information and can be used 
to enhance portability of programs between different computers. The routines IMACH, and AMACH 
describe the computer’s arithmetic. The routine UMACH describes the input, ouput, and error output 
unit numbers. 

IMACH 

This function retrieves machine integer constants that define the arithmetic used by the computer. 

Function Return Value 
IMACH(1) = Number of bits per integer storage unit. 

IMACH(2) = Number of characters per integer storage unit: 

Integers are represented in M-digit, base A form as 

0

M k
kk

x A�
�

�  

where 	 is the sign and 0 � xk < A, k = 0, �, M. 

Then, 

IMACH(3) = A, the base. 

IMACH(4) = M, the number of base-A digits. 

IMACH(5) = AM � 1, the largest integer. 

The machine model assumes that floating-point numbers are represented in normalized 
N-digit, base B form as 

1

NE k
kk

B x B�
�

�
�  

where 	 is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and E� � E � E�. Then, 
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IMACH(6) = , the base.
IMACH(7) = , the number of base-  digits in single precision.
IMACH(8) = , the smallest single precision exponent.

s

s

B
N B
E

 

max

min

max

IMACH(9) = , the largest single precision exponent.

IMACH(10) = , the number of base-  digits in double precision.
IMACH(11) = , the smallest double precision exponent.

IMACH(12) = , the

s

d

d

d

E

N B
E

E  number of base-  digits in double precisionB

 

Required Arguments 
I — Index of the desired constant. (Input)  

FORTRAN 90 Interface 
Generic: IMACH (I) 

Specific:  The specific interface name is IMACH. 

FORTRAN 77 Interface 
Single: IMACH (I) 

AMACH 

The function subprogram AMACH retrieves machine constants that define the computer’s single-
precision or double precision arithmetic. Such floating-point numbers are represented in 
normalized N-digit, base B form as 

1

NE k
kk

B x B�
�

�
�  

where 	 is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and  

min maxE E E� �  

Function Return Value 

� �

AMACH(1)

AMACH(2)

AMACH(3)

AMACH(4)

1min , the smallest normalized positive number.

max= 1 , the largest number.

= , the smallest relative spacing.
1= ,  the largest relative spacing.

E
B
E NB B

NB
NB

�

�

�
�

�

�
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� �AMACH(5)

AMACH(6)

AMACH(7)

AMACH(8)

 = log .10
NaN (non-signaling not a number).                              

=positive machine infinity.
= negative machine infinity.

B

�  

See Comment 1 for a description of the use of the generic version of this function. 

See Comment 2 for a description of min, max, and N.  

Required Arguments 
I — Index of the desired constant. (Input)  

FORTRAN 90 Interface 
Generic: AMACH (I) 

Specific:  The specific interface names are S_AMACH and D_AMACH. 

FORTRAN 77 Interface 
Single: AMACH (I) 

Double: The double precision name is DMACH. 

Comments 
1. If the generic version of this function is used, the immediate result must be stored in a 

variable before use in an expression. For example: 

X = AMACH(I) 
Y = SQRT(X) 
 
must be used rather than 

Y = SQRT(AMACH(I)). 

If this is too much of a restriction on the programmer, then the specific name can be 
used without this restriction..  

2. Note that for single precision B = IMACH(6),  N = IMACH(7). 
 Emin = IMACH(8), and Emax = IMACH(9). 
For double precision B = IMACH(6),  N = IMACH(10). 
 Emin = IMACH(11), and Emax = IMACH(12). 
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3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a 
number) as the result of various invalid or ambiguous operations, such as 0/0. The intent 
is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a 
quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do 
not have a special representation for infinity, AMACH(7) returns the same value as 
AMACH(2). 

DMACH 

See AMACH.  

IFNAN(X) 
This logical function checks if the argument X is NaN (not a number).  

Function Return Value 
IFNAN - Logical function value.  True is returned if the input argument is a NAN. Otherwise,  

False is returned. (Output) 

Required Arguments 
X – Argument for which the test for NAN is desired. (Input)  

FORTRAN 90 Interface 
Generic: IFNAN(X) 

Specific:  The specific interface names are S_IFNAN and D_IFNAN. 

FORTRAN 77 Interface 
Single: IFNAN (X) 

Double: The double precision name is DIFNAN. 

Example 
      USE IFNAN_INT 
      USE AMACH_INT 
      USE UMACH_INT 
      INTEGER      NOUT 
      REAL         X  
! 
      CALL UMACH (2, NOUT)  
! 
      X = AMACH(6) 
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      IF (IFNAN(X)) THEN 
         WRITE (NOUT,*) ’ X is NaN (not a number).’ 
      ELSE  
         WRITE (NOUT,*) ’ X = ’, X  
      END IF  
! 
      END 

Output 
X is NaN (not a number). 

Description 
The logical function IFNAN checks if the single or double precision argument X is NAN (not a 
number). The function IFNAN is provided to facilitate the transfer of programs across computer 
systems. This is because the check for NaN can be tricky and not portable across computer 
systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE 
standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself. 
Thus, the check is performed as 
IFNAN = X .NE. X 

On other computers that do not use IEEE floating-point format, the check can be performed as: 
IFNAN = X .EQ. AMACH(6) 

 

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix, 
(IEEE 1985). The above example illustrates the use of IFNAN. If X is NaN, a message is printed 
instead of X. (Routine UMACH, which is described in the following section, is used to retrieve the 
output unit number for printing the message.) 

UMACH 
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. 

Required Arguments 
N  —  Integer value indicating the action desired. If the value of N is negative, the input, output, or 
error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error 
output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N. 
(Input) 

NUNIT  —  The unit number that is either retrieved or set, depending on the value of input 
argument N. (Input/Output) 

The arguments are summarized by the following table: 

 
N Effect 
1 Retrieves input unit number in NUNIT. 
2 Retrieves output unit number in NUNIT. 
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N Effect 
3 Retrieves error output unit number in NUNIT. 

�1 Sets the input unit number to NUNIT. 
�2 Sets the output unit number to NUNIT. 
�3 Sets the error output unit number to NUNIT. 

FORTRAN 90 Interface 
Generic: CALL UMACH (N, NUNIT) 

Specific:  The specific interface name is UMACH. 

FORTRAN 77 Interface 
Single: CALL UMACH (N, NUNIT) 

Example 
In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function 
since the argument is invalid. With a call to UMACH, the error message will be written to a local 
file named “CHECKERR”. 

 
      USE AMACH_INT 
      USE UMACH_INT 

      INTEGER     N, NUNIT 
      REAL        X 
!                                      Set Parameter 
      N = 0 
! 
      NUNIT = 9 
      CALL UMACH (-3, NUNIT) 
      OPEN (UNIT=9,FILE=’CHECKERR’) 
      X = AMACH(N) 
      END 

Output 
The output from this example, written to “CHECKERR” is: 

*** TERMINAL ERROR 5 from AMACH.  The argument must be between 1 and 8 
***           inclusive. N = 0 

Description 
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is 
set automatically so that the default FORTRAN unit numbers for standard input, standard output, 
and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the 
beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are 



 

 
 

IMSL MATH/LIBRARY Special Functions Reference Material � 269 

 

 

 

changed from the standard values, the user should insert an appropriate OPEN statement in the 
calling program. 

Reserved Names 
When writing programs accessing IMSL MATH/LIBRARY Special Functions, the user should 
choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or 
named common blocks, such as the workspace common block WORKSP (page 261). The user needs 
to be aware of two types of name conflicts that can arise. The first type of name conflict occurs 
when a name (technically a symbolic name) is not uniquely defined within a program unit (either a 
main program or a subprogram). For example, such a name conflict exists when the name BSJS is 
used to refer both to a type REAL variable and to the IMSL routine BSJS in a single program unit. 
Such errors are detected during compilation and are easy to correct. The second type of name 
conflict, which can be more serious, occurs when names of program units and named common 
blocks are not unique. For example, such a name conflict would be caused by the user defining a 
routine named WORKSP and also referencing a MATH/LIBRARY Special Functions routine that 
uses the named common block WORKSP. Likewise, the user must not define a subprogram with the 
same name as a subprogram in MATH/LIBRARY Special Functions, that is referenced directly by 
the user’s program or is referenced indirectly by other MATH/LIBRARY Special Functions 
subprograms.  

MATH/LIBRARY Special Functions consists of many routines, some that are described in the 
User’s Manual and others that are not intended to be called by the user and, hence, that are not 
documented. If the choice of names were completely random over the set of valid FORTRAN 
names and if a program uses only a small subset of MATH/LIBRARY Special Functions, the 
probability of name conflicts is very small. Since names are usually chosen to be mnemonic, 
however, the user may wish to take some precautions in choosing FORTRAN names.  

Many IMSL names consist of a root name that may have a prefix to indicate the type of the 
routine. For example, the IMSL single precision routine for computing Bessel functions of the first 
kind with real order has the name BSJS, which is the root name, and the corresponding IMSL 
double precision routine has the name DBSJS. Associated with these two routines are B2JS and 
DB2JS. BSJS is listed in the Alphabetical Index of Routines, but DBSJS, B2JS, and DB2JS are 
not. The user of BSJS must consider both names BSJS and B2JS to be reserved; likewise, the user 
of DBSJS must consider both names DBSJS and DB2JS to be reserved. The root names of all 
routines and named common blocks that are used by MATH/LIBRARY Special Functions and 
that do not have a numeral in the second position of the root name are listed in the Alphabetical 
Index of Routines. Some of the routines in this Index are not intended to be called by the user and 
so are not documented. The careful user can avoid any conflicts with IMSL names if the following 
rules are observed: 

� Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s 
Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_. 

� Do not choose a name of three or more characters with a numeral in the second or third 
position. 

These simplified rules include many combinations that are, in fact, allowable.  However, if the 
user selects names that conform to these rules, no conflict will be encountered. 
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Deprecated Features and Deleted Routines 
Automatic Workspace Allocation 
FORTRAN subroutines that work with arrays as input and output often require extra arrays for use 
as workspace while doing computations or moving around data. IMSL routines generally do not 
require the user explicitly to allocate such arrays for use as workspace. On most systems the 
workspace allocation is handled transparently. The only limitation is the actual amount of memory 
available on the system. 

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in 
a named common block WORKSP. A very similar use of a workspace stack is described by Fox et 
al. (1978, pages 116�121). (For compatiblity with older versions of the IMSL Libraries, space is 
allocated from the COMMON block, if possible.) 

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL 
routine LSARG (in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs 
arrays for workspace. LSARG allocates arrays from the common area, and passes them to the 
lower-level routine L2ARG which does the computations. In the “Comments” section of the 
documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described. 
This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names 
of these routines have a “2” in the second position (or in the third position in double precision 
routines having a “D” prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few cases, the 2-level 
routine allows additional options that the main routine does not allow. 

Prior to returning to the calling program, a routine that allocates workspace generally deallocates 
that space so that it becomes available for use in other routines. 

Changing the Amount of Space Allocated 
This section is relevant only to those systems on which the transparent workspace allocator is not 
available. 

By default, the total amount of space allocated in the common area for storage of numeric data is 
5000 numeric storage units. (A numeric storage unit is the amount of space required to store an 
integer or a real number. By comparison, a double precision unit is twice this amount. Therefore, 
the total amount of space allocated in the common area for storage of numeric data is 2500 double 
precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For 
larger problems in which the default amount of workspace is insufficient, the user can change the 
allocation by supplying the FORTRAN statements to define the array in the named common block 
and by informing the IMSL workspace allocation system of the new size of the common array. To 
request 7000 units, the statements are 

COMMON /WORKSP/ RWKSP 
REAL RWKSP(7000) 
CALL IWKIN(7000) 

If an IMSL routine attempts to allocate workspace in excess of the amount available in the com-
mon stack, the routine issues a fatal error message that indicates how much space is needed and 
prints statements like those above to guide the user in allocating the necessary amount. The 
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program below uses IMSL routine BSJS (See Chapter 6, “Bessel Funtions ” of this manual.) to 
illustrate this feature. 

This routine requires workspace that is just larger than twice the number of function values 
requested. 

      INTEGER    N 
      REAL       BS(10000), X, XNU 
      EXTERNAL   BSJS 
!                                  Set Parameters 
      XNU = .5 
      X   = 1. 
      N   = 6000 
      CALL BSJS (XNU, X, N, BS) 
      END 

Output 
*** TERMINAL ERROR from BSJS.  Insufficient workspace for  
***          current allocation(s). Correct by calling  
***          IWKIN from main program with the three  
***          following statements:  (REGARDLESS OF  
***          PRECISION) 
***                COMMON /WORKSP/  RWKSP 
***                REAL RWKSP(12018) 
***                CALL IWKIN(12018) 

*** TERMINAL ERROR from BSJS.  The workspace requirement is  
***          based on N =6000. 
STOP 

In most cases, the amount of workspace is dependent on the parameters of the problem so the 
amount needed is known exactly. In a few cases, however, the amount of workspace is dependent 
on the data (for example, if it is necessary to count all of the unique values in a vector). Thus, the 
IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases, the 
error message printed is an estimate of the amount of space required. 

Character Workspace 
Since character arrays cannot be equivalenced with numeric arrays, a separate named common 
block WKSPCH is provided for character workspace. In most respects, this stack is managed in the 
same way as the numeric stack. The default size of the character workspace is 2000 character 
units. (A character unit is the amount of space required to store one character.) The routine 
analogous to IWKIN used to change the default allocation is IWKCIN. 

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY 
Special Functions. A deprecated routine is one that is no longer used by anything in the library but 
is being included in the product for those users who may be currently referencing it in their 
application. However, any future versions of MATH/LIBRARY Special Functions will not 
include these routines. If any of these routines are being called within an application, it is 
recommended that you change your code or retain the deprecated routine before replacing this 
library with the next version. Most of these routines were called by users only when they needed 
to set up their own workspace. Thus, the impact of these changes should be limited. 
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G2DF 
G2IN 
G3DF 

The following specific FORTRAN intrinsic functions are no longer supplied by IMSL. They can 
all be found in their manufacturer’s FORTRAN runtime libraries. If any change must be made to 
the user’s application as a result of their removal from the IMSL Libraries, it is limited to the 
redeclaration of the function from “external” to “intrinsic.” Argument lists and results should be 
identical. 

 
ACOS CEXP DATAN2 DSQRT 

AINT CLOG DCOS DTAN 

ALOG COS DCOSH DTANH 

ALOG10 COSH DEXP EXP 

ASIN CSIN DINT SIN 

ATAN CSQRT DLOG SINH 

ATAN2 DACOS DLOG10 SQRT 

CABS DASIN DSIN TAN 

CCOS DATAN DSINH TANH 
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GAMS Index 

Description 
This index lists routines in MATH/LIBRARY Special Functions by a tree-structured classification 
scheme known as GAMS. Boisvert, Howe, Kahaner, and Springmann (1990) give the GAMS 
classification scheme. The classification scheme given here is Version 2.0. The first level of the 
classification scheme is denoted by a letter A thru Z as follows: 
A. Arithmetic, Error Analysis  
B.  Number Theory  
C. Elementary and Special Functions  
D. Linear Algebra  
E. Interpolation  
F. Solution of Nonlinear Equations  
G. Optimization  
H. Differentiation and Integration  
I. Differential and Integral Equations  
J. Integral Transforms  
K. Approximation  
L. Statistics, Probability  
M. Simulation, Stochastic Modeling  
N. Data Handling  
O. Symbolic Computation  
P. Computational Geometry  
Q. Graphics  
R. Service Routines  
S. Software Development Tools  
Z. Other 

There are seven levels in the classification scheme. Subclasses for levels 3, 5, and 7 are denoted by 
letters �a� thru �w�. Subclasses for levels 2, 4, and 6 are denoted by the numbers 1 thru 23.  

The index given in the following pages lists routines in MATH/LIBRARY Special Functions 
within each GAMS subclass. The purpose of the routine appear alongside the routine name. 
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IMSL MATH/LIBRARY Special Functions 
C...........ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5) 

C1.........Integer-valued functions (e.g., floor, ceiling, factorial, binomial 
coefficient) 

BINOM Evaluates the binomial coefficient. 
FAC Evaluates the factorial of the argument. 

C2.........Powers, roots, reciprocals 
CBRT Evaluates the real or complex cube root. 

C3.........Polynomials 

C3a .......Orthogonal 
INITS Initializes the orthogonal series so the function value is the 

number of terms needed to insure the error is no larger 
than the requested accuracy. 

C3a2 .....Chebyshev, Legendre 
CSEVL Evaluates the N-term Chebyshev series. 

C4.........Elementary transcendental functions 
CACOS Evaluates the complex arc cosine. 
CARG Evaluates the argument of a complex number. 
CASIN Evaluates the complex arc sine. 
CATAN Evaluates the complex arc tangent. 
CATAN2 Evaluates the complex arc tangent of a ratio. 
COSDG Evaluates the cosine for the argument in degrees. 
COT Evaluates the real or complex cotangent. 
SINDG Evaluates the sine for the argument in degrees. 

C4b.......Exponential, logarithmic 
ALNREL Evaluates the natural logarithm of one plus the argument. 
CLNREL Evaluates the principal value of the complex natural 

logarithm of one plus the argument. 
EXPRL Evaluates the real or complex exponential function 

factored from first order. 
LOG10 Evaluates the principal value of the real or complex 

common logarithm. 

C4c .......Hyperbolic, inverse hyperbolic 
ACOSH Evaluates the real or complex arc hyperbolic cosine. 
ASINH Evaluates the real or complex arc hyperbolic sine. 
ATANH Evaluates the arc hyperbolic tangent.. 
CSINH Evaluates the complex hyperbolic sine. 
CTANH Evaluates the complex hyperbolic tangent. 
TAN Evaluates the real or complex tangent. 

C5.........Exponential and logarithmic integrals 
ALI Evaluates the logarithmic integral. 
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CHI Evaluates the hyperbolic cosine integral. 
CI Evaluates the cosine integral. 
CIN Evaluates a function closely related to the cosine integral. 
CINH Evaluates a function closely related to the hyperbolic 

cosine integral. 
E1 Evaluates the exponential integral for arguments greater 

than zero and the Cauchy principal value of the integral for 
arguments less than zero. 

EI Evaluates the exponential integral for arguments greater 
than zero and the Cauchy principal value for arguments 
less than zero. 

ENE Evaluates the exponential integral of integer order for 
arguments greater than zero scaled by EXP(X). 

SHI Evaluates the hyperbolic sine integral. 
SI Evaluates the sine integral. 

C7.........Gamma 

C7a .......Gamma, log gamma, reciprocal gamma 
ALGAMS Returns the logarithm of the absolute value of the gamma 

function and the sign of gamma. 
ALNGAM Evaluates the real or complex natural logarithm of the 

absolute value of the gamma function. 
GAMMA Evaluates the real or complex gamma function. 
GAMR Evaluates the reciprocal real or complex gamma function. 
POCH Evaluates a generalization of Pochhammer�s symbol. 
POCH1 Evaluates a generalization of Pochhammer�s symbol 

starting from the first order. 

C7b.......Beta, log beta 
ALBETA Evaluate the log of the real or complex beta function,  

ln �(a,b). 
BETA Evaluates the real or complex beta function. 

C7c .......Psi function 
PSI Evaluates the logarithmic derivative of the gamma 

function for a real or complex argument. 

C7e ....... Incomplete gamma 
CHIDF Evaluates the chi-squared distribution function. 
CHIIN Evaluates the inverse of the chi-squared distribution 

function. 
GAMDF Evaluates the gamma distribution function. 
GAMI Evaluates the incomplete gamma function. 
GAMIC Evaluates the complementary incomplete gamma function. 
GAMIT Evaluates the Tricomi form of the incomplete gamma 

function. 

C7f ....... Incomplete beta 
BETAI Evaluates the incomplete beta function ratio. 
BETDF Evaluates the beta probability distribution function. 
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BETIN Evaluates the inverse of the beta distribution function. 

C8.........Error functions 

C8a .......Error functions, their inverses, integrals, including the normal 
distribution function 

ANORDF Evaluates the standard normal (Gaussian) distribution 
function. 

ANORIN Evaluates the inverse of the standard normal (Gaussian) 
distribution function. 

CERFE Evaluates the complex scaled complemented error 
function. 

ERF Evaluates the error function. 
ERFC Evaluates the complementary error function. 
ERFCE Evaluates the exponentially scaled complementary error 

function. 
ERFCI Evaluates the inverse complementary error function. 
ERFI Evaluates the inverse error function. 

C8b.......Fresnel integrals 
FRESC Evaluates the cosine Fresnel integral. 
FRESS Evaluates the sine Fresnel integral. 

C8c .......Dawson�s integral 
DAWS Evaluates Dawson function. 

 

C10.......Bessel functions 

C10a .....J, Y, H���; H��� 

C10a1 ...Real argument, integer order 
BSJ0 Evaluates the Bessel function of the first kind of order 

zero. 
BSJ1 Evaluates the Bessel function of the first kind of order one. 
BSJNS Evaluates a sequence of Bessel functions of the first kind 

with integer order and real or complex arguments. 
BSY0 Evaluates the Bessel function of the second kind of order 

zero. 
BSY1 Evaluates the Bessel function of the second kind of order 

one. 

C10a2 ...Complex argument, integer order. 
BSJNS Evaluates a sequence of Bessel functions of the first kind 

with integer order and real or complex arguments. 

C10a3 ...Real argument, real order 
BSJS Evaluates a sequence of Bessel functions of the first kind 

with real order and real positive arguments. 
BSYS Evaluates a sequence of Bessel functions of the second 

kind with real nonnegative order and real positive 
arguments. 
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C10a4 ...Complex argument, real order 
CBJS Evaluates a sequence of Bessel functions of the first kind 

with real order and complex arguments. 
CBYS Evaluates a sequence of Bessel functions of the second 

kind with real order and complex arguments. 

C10b..... I, K 

C10b1...Real argument, integer order 
BSI0 Evaluates the modified Bessel function of the first kind of 

order zero. 
BSI0E Evaluates the exponentially scaled modified Bessel 

function of the first kind of order zero. 
BSI1 Evaluates the modified Bessel function of the first kind of 

order one. 
BSI1E Evaluates the exponentially scaled modified Bessel 

function of the first kind of order one. 
BSINS Evaluates a sequence of modified Bessel functions of the 

first kind with integer order and real or complex 
arguments. 

BSK0 Evaluates the modified Bessel function of the third kind of 
order zero. 

BSK0E Evaluates the exponentially scaled modified Bessel 
function of the third kind of order zero. 

BSK1 Evaluates the modified Bessel function of the third kind of 
order one. 

BSK1E Evaluates the exponentially scaled modified Bessel 
function of the third kind of order one. 

C10b2...Complex argument, integer order 
BSINS Evaluates a sequence of modified Bessel functions of the 

first kind with integer order and real or complex 
arguments. 

C10b3...Real argument, real order 
BSIES Evaluates a sequence of exponentially scaled Modified 

Bessel functions of the first kind with nonnegative real 
order and real positive arguments. 

BSIS Evaluates a sequence of Modified Bessel functions of the 
first kind with real order and real positive arguments. 

BSKES Evaluates a sequence of exponentially scaled modified 
Bessel functions of the third kind of fractional order. 

BSKS Evaluates a sequence of modified Bessel functions of the 
third kind of fractional order. 

C10b4...Complex argument, real order 
CBIS Evaluates a sequence of Modified Bessel functions of the 

first kind with real order and complex arguments. 
CBKS Evaluates a sequence of Modified Bessel functions of the 

second kind with real order and complex arguments. 
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C10c .....Kelvin functions 
AKEI0 Evaluates the Kelvin function of the second kind, kei, of 

order zero. 
AKEI1 Evaluates the Kelvin function of the second kind, kei, of 

order one. 
AKEIP0 Evaluates the Kelvin function of the second kind, kei, of 

order zero. 
AKER0 Evaluates the Kelvin function of the second kind, ker, of 

order zero. 
AKER1 Evaluates the Kelvin function of the second kind, ker, of 

order one. 
AKERP0 Evaluates the derivative of the Kelvin function of the 

second kind, ker, of order zero. 
BEI0 Evaluates the Kelvin function of the first kind, bei, of 

order zero. 
BEI1 Evaluates the Kelvin function of the first kind, bei, of 

order one. 
BEIP0 Evaluates the derivative of the Kelvin function of the first 

kind, bei, of order zero. 
BER0 Evaluates the Kelvin function of the first kind, ber, of 

order zero. 
BER1 Evaluates the Kelvin function of the first kind, ber, of 

order one. 
BERP0 Evaluates the derivative of the Kelvin function of the first 

kind, ber, of order zero. 

C10d.....Airy and Scorer functions 
AI Evaluates the Airy function. 
AID Evaluates the derivative of the Airy function. 
AIDE Evaluates the exponentially scaled derivative of the Airy 
function. 
AIE Evaluates the exponentially scaled Airy function. 
BI Evaluates the Airy function of the second kind. 
BID Evaluates the derivative of the Airy function of the second 

kind. 
BIDE Evaluates the exponentially scaled derivative of the Airy 

function of the second kind. 
BIE Evaluates the exponentially scaled Airy function of the 

second kind. 

C14.......Elliptic integrals 
EJCN Evaluates the real or cmplex Jacobi elliptic function  

cn(x, m). 
EJDN Evaluates the real or complex Jacobi elliptic function  

dn(z, m). 
EJSN Evaluates the real or comple Jacobi elliptic function  

sn(x, m). 
ELE Evaluates the complete elliptic integral of the second kind 

E(x). 
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ELK Evaluates the complete elliptic integral of the kind K(x). 
ELRC Evaluates an elementary integral from which inverse 

circular functions, logarithms and inverse hyperbolic 
functions can be computed. 

ELRD Evaluates Carlson�s incomplete elliptic integral of the 
second kind RD(X, Y, Z). 

ELRF Evaluates Carlson�s incomplete elliptic integral of the first 
kind RF(X, Y, Z). 

ELRJ Evaluates Carlson�s incomplete elliptic integral of the third 
kind RJ(X, Y, Z, RHO). 

C15.......Weierstrass elliptic functions 
CWPL Evaluates the Weierstrass P-function in the lemniscat case 

for complex argument with unit period parallelogram. 
CWPLD Evaluates the first derivative of the Weierstrass P-function 

in the lemniscatic case for complex argum with unit period 
parallelogram. 

CWPQ Evaluates the Weierstrass P-function in the 
equianharmonic case for complex argument with unit 
period parallelogram. 

CWPQD Evaluates the first derivative of the Weierstrass P-function 
in the equianharmonic case for complex argument with 
unit period parallelogram. 

C17.......Mathieu functions 
MATCE Evaluates a sequence of even, periodic, integer order, real 

Mathieu functions. 
MATEE Evaluates the eigenvalues for the periodic Mathieu 

functions. 
MATSE Evaluates a sequence of odd, periodic, integer order, real 

Mathieu functions. 

C19.......Other special functions 
SPENC Evaluates a form of Spence�s integral. 

L ...........STATISTICS, PROBABILITY 

L5 .........Function evaluation (search also class C) 

L5a .......Univariate 

L5a1 .....Cumulative distribution functions, probability density functions 
GCDF Evaluates a general continuous cumulative distribution 

function given ordinates of the density. 

L5a1b ...Beta, binomial 
BETDF Evaluates the beta probability distribution function. 
BINDF Evaluates the binomial distribution function. 
BINPR Evaluates the binomial probability function. 

L5a1c ...Cauchy, chi-squared 
CHIDF Evaluates the chi-squared distribution function. 
CSNDF Evaluates the noncentral chi-squared distribution function. 
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L5a1f ....F distribution 
FDF Evaluates the F distribution function. 

L5a1g ...Gamma, general, geometric 
GAMDF Evaluates the gamma distribution function. 

L5a1h ...Halfnormal, hypergeometric 
HYPDF Evaluates the hypergeometric distribution function. 
HYPPR Evaluates the hypergeometric probability function. 

L5a1k ...Kendall F statistic, Kolmogorov-Smirnov 
AKS1DF Evaluates the distribution function of the one-sided 

Kolmogorov-Smirnov goodness of fit D� or D� test 
statistic based on continuous data for one sample. 

AKS2DF Evaluates the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on 
continuous data for two samples. 

L5a1n ...Negative binomial, normal 
ANORDF Evaluates the standard normal (Gaussian) distribution 

function. 

L5a1p ...Pareto, Poisson 
POIDF Evaluates the Poisson distribution function. 
POIPR Evaluates the Poisson probability function. 

L5a1t ....t distribution 
TDF Evaluates the Student�s t distribution function. 
TNDF Evaluates the noncentral Student�s t distribution function. 

L5a2 .....Inverse cumulative distribution functions, sparsity functions 
GCIN Evaluates the inverse of a general continuous cumulative 

distribution function given ordinates of the density. 

L5a2b ...Beta, binomial 
BETIN Evaluates the inverse of the beta distribution function. 

L5a2c....Cauchy, chi-squared 
CHIIN Evaluates the inverse of the chi-squared distribution 

function. 

L5a2f ....F distribution 
FIN Evaluates the inverse of the F distribution function. 

L5a2n ...Negative binomial, normal, normal scores 
ANORIN Evaluates the inverse of the standard normal (Gaussian) 

distribution function. 

L5a2t ....t distribution 
TIN Evaluates the inverse of the Student�s t distribution 

function. 

L5b .......Multivariate 

L5b1 .....Cumulative distribution functions, probability density functions 
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L5b1n ...Normal 
BNRDF Evaluates the bivariate normal distribution function. 

N...........DATA HANDLING 

N1......... Input, output 
IFNAN Checks if a value is NaN (not a number). 

N4.........Storage management (e.g., stacks, heaps, trees) 
IWKCIN Initializes bookkeeping locations describing the character 

workspace stack. 
IWKIN Initializes bookkeeping locations describing the workspace 

stack. 

R...........SERVICE ROUTINES 

R1.........Machine-dependent constants 
AMACH Retrieves single-precision machine constants. 
DMACH Retrieves double precision machine constants. 
IFNAN Checks if a value is NaN (not a number). 
IMACH Retrieves integer machine constants. 
UMACH Sets or retrieves input or output device unit numbers. 

R3.........Error handling 
ERSET Sets error handler default print and stop actions. 
IERCD Retrieves the integer code for an informational error. 
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Alphabetical Summary of Routines 

IMSL MATH/LIBRARY Special Functions 
ACOS 17 Evaluates the complex arc cosine. 

ACOSH 25 Evaluates the real or complex arc hyperbolic cosine. 

AI 149 Evaluates the Airy function. 

AID 152 Evaluates the derivative of the Airy function. 

AIDE 157 Evaluates the exponentially scaled derivative of the Airy 
function. 

AIE 154 Evaluates the exponentially scaled Airy function. 

AKEI0 138 Evaluates the Kelvin function of the second kind, kei, of 
order zero. 

AKEI1 147 Evaluates the Kelvin function of the second kind, kei, of 
order one. 

AKEIP0 142 Evaluates the Kelvin function of the second kind, kei, of  
order zero. 

AKER0 137 Evaluates the Kelvin function of the second kind, ker, of 
order zero. 

AKER1 146 Evaluates the Kelvin function of the second kind, ker, of 
order one. 

AKERP0 141 Evaluates the derivative of the Kelvin function of the 
second kind, ker, of order zero. 

AKS1DF 201 Evaluates the distribution function of the one-sided 
Kolmogorov-Smirnov goodness of fit D� or D� test 
statistic based on continuous data for one sample. 

AKS2DF 204 Evaluates the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on 
continuous data for two samples. 

ALBETA 71 Evaluates the natural logarithm of the complete beta 
function for positive arguments. 
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ALGAMS 57 Returns the logarithm of the absolute value of the gamma 
function and the sign of gamma. 

ALI 36 Evaluates the logarithmic integral. 

ALNGAM 55 Evaluates the real or complex function, ln �	(x)�. 

ALNREL 6 Evaluates ln(x + 1) for real or complex x. 

AMACH 264 Retrieves single-precision machine constants. 

ANORDF 206 Evaluates the standard normal (Gaussian) distribution 
function. 

ANORIN 208 Evaluates the inverse of the standard normal (Gaussian) 
distribution function. 

ASIN 16 Evaluates the complex arc sine. 

ASINH 24 Evaluates sinh�� x for real or complex x. 

ATAN 18 Evaluates the complex arc tangent. 

ATAN2 19 Evaluates the complex arc tangent of a ratio. 

ATANH 27 Evaluates tanh�� x for real or complex x. 

BEI0 136 Evaluates the Kelvin function of the first kind, bei, of 
order zero. 

BEI1 145 Evaluates the Kelvin function of the first kind, bei, of 
order one. 

BEIP0 140 Evaluates the derivative of the Kelvin function of the first 
kind, bei, of order zero. 

BER0 135 Evaluates the Kelvin function of the first kind, ber, of 
order zero. 

BER1 144 Evaluates the Kelvin function of the first kind, ber, of 
order one. 

BERP0 139 Evaluates the derivative of the Kelvin function of the first 
kind, ber, of order zero. 

BETA 69 Evaluates the real or complex beta function, �(a,b). 

BETAI 73 Evaluates the incomplete beta function ratio. 

BETDF 209 Evaluates the beta probability distribution function. 

BETIN 212 Evaluates the inverse of the beta distribution function. 

BI 150 Evaluates the Airy function of the second kind. 

BID 153 Evaluates the derivative of the Airy function of the 
second kind. 

BIDE 158 Evaluates the exponentially scaled derivative of the Airy 
function of the second kind. 
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BIE 155 Evaluates the exponentially scaled Airy function of the 
second kind. 

BINDF 190 Evaluates the binomial distribution function. 

BINOM 50 Evaluates the binomial coefficient. 

BINPR 191 Evaluates the binomial probability function. 

BNRDF 213 Evaluates the bivariate normal distribution function. 

BSI0 98 Evaluates the modified Bessel function of the first kind of 
order zero. 

BSI0E 104 Evaluates the exponentially scaled modified Bessel 
function of the first kind of order zero. 

BSI1 100 Evaluates the modified Bessel function of the first kind of 
order one. 

BSI1E 106 Evaluates the exponentially scaled modified Bessel 
function of the first kind of order one. 

BSIES 118 Evaluates a sequence of exponentially scaled modified 
Bessel functions of the first kind with nonnegative real 
order and real positive arguments. 

BSINS 111 Evaluates a sequence of modified Bessel functions of the 
first kind with integer order and real or complex 
arguments. 

BSIS 117 Evaluates a sequence of modified Bessel functions of the 
first kind with real order and real positive arguments. 

BSJ0 92 Evaluates the Bessel function of the first kind of order 
zero. 

BSJ1 94 Evaluates the Bessel function of the first kind of order 
one. 

BSJNS 109 Evaluates a sequence of Bessel functions of the first kind 
with integer order and real arguments. 

BSJS 113 Evaluates a sequence of Bessel functions of the first kind 
with real order and real positive arguments. 

BSK0 101 Evaluates the modified Bessel function of the third kind 
of order zero. 

BSK0E 107 Evaluates the exponentially scaled modified Bessel 
function of the third kind of order zero. 

BSK1 103 Evaluates the modified Bessel function of the third kind 
of order one. 

BSK1E 108 Evaluates the exponentially scaled modified Bessel 
function of the third kind of order one. 
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BSKES 121 Evaluates a sequence of exponentially scaled modified 
Bessel functions of the third kind of fractional order. 

BSKS 120 Evaluates a sequence of modified Bessel functions of the 
third kind of fractional order. 

BSY0 95 Evaluates the Bessel function of the second kind of order 
zero. 

BSY1 97 Evaluates the Bessel function of the second kind of order 
one. 

BSYS 115 Evaluates a sequence of Bessel functions of the second 
kind with real nonnegative order and real positive 
arguments. 

CARG 1 Evaluates the argument of a complex number. 

CBIS 127 Evaluates a sequence of modified Bessel functions of the 
first kind with real order and complex arguments. 

CBJS 123 Evaluates a sequence of Bessel functions of the first kind 
with real order and complex arguments. 

CBKS 129 Evaluates a sequence of modified Bessel functions of the 
third kind with real order and complex arguments. 

CBRT 2 Evaluates the cube root of a real or complex number 3 x . 

CBYS 125 Evaluates a sequence of Bessel functions of the second 
kind with real order and complex arguments. 

COSH 21 Evaluates the complex hyperbolic cosine. 

CERFE 80 Evaluates the complex scaled complemented error 
function. 

CHI 43 Evaluates the hyperbolic cosine integral. 

CHIDF 215 Evaluates the chi-squared distribution function. 

CHIIN 217 Evaluates the inverse of the chi-squared distribution 
function. 

CI 39 Evaluates the cosine integral. 

CIN 40 Evaluates a function closely related to the cosine integral. 

CINH 44 Evaluates a function closely related to the hyperbolic 
cosine integral. 

COSDG 14 Evaluates the cosine for the argument in degrees. 

COT 11 Evaluates cot x for real x. 

CPSI 66 Evaluates the logarithmic derivative of the gamma 
function for a complex argument. 

CSEVL 257 Evaluates the N-term Chebyshev series. 
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CSINH 21 Evaluates the complex hyperbolic sine. 

CSNDF 219 Evaluates the noncentral chi-squared distribution 
function. 

CTANH 23 Evaluates the complex hyperbolic tangent. 

CWPL 173 Evaluates the Weierstrass P-function in the lemniscat 
case for complex argument with unit period 
parallelogram. 

CWPLD 175 Evaluates the first derivative of the Weierstrass  
P-function in the lemniscatic case for complex argum 
with unit period parallelogram. 

CWPQ 176 Evaluates the Weierstrass P-function in the 
equianharmonic case for complex argument with unit 
period parallelogram. 

CWPQD 177 Evaluates the first derivative of the Weierstrass P-
function in the equianharmonic case for complex 
argument with unit period parallelogram. 

DAWS 85 Evaluates Dawson function. 

DMACH 266 Retrieves double precision machine constants. 

E1 33 Evaluates the exponential integral for arguments greater 
than zero and the Cauchy principal value of the integral 
for arguments less than zero. 

EI 32 Evaluates the exponential integral for arguments greater 
than zero and the Cauchy principal value for arguments 
less than zero. 

EJCN 180 Evaluates the Jacobi elliptic function cn(x, m). 

EJDN 182 This function evaluates the Jacobi elliptic function  
dn(x, m). 

EJSN 178 Evaluates the Jacobi elliptic function sn(x, m). 

ELE 165 Evaluates the complete elliptic integral of the second kind 
E(x). 

ELK 163 Evaluates the complete elliptic integral of the kind K(x). 

ELRC 170 Evaluates an elementary integral from which inverse 
circular functions, logarithms and inverse hyperbolic 
functions can be computed. 

ELRD 167 Evaluates Carlson�s incomplete elliptic integral of the 
second kind RD(X, Y, Z). 

ELRF 166 Evaluates Carlson�s incomplete elliptic integral of the 
first kind RF(X, Y, Z). 
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ELRJ 169 Evaluates Carlson�s incomplete elliptic integral of the 
third kind RJ(X, Y, Z, RHO). 

ENE 35 Evaluates the exponential integral of integer order for 
arguments greater than zero scaled by EXP(X). 

ERF 76 Evaluates the error function. 

ERFC 77 Evaluates the complementary error function. 

ERFCE 79 Evaluates the exponentially scaled complementary error 
function. 

ERFCI 83 Evaluates the inverse complementary error function. 

ERFI 82 Evaluates the inverse error function. 

ERSET 261 Set error handler default print and stop actions. 

EXPRL 4 Evaluates (ex � 1)/x for real or complex x. 

FAC 48 Evaluates the factorial of the argument. 

FDF 222 Evaluates the F distribution function. 

FIN 223 Evaluates the inverse of the F distribution function. 

FRESC 86 Evaluates the cosine Fresnel integral. 

FRESS 88 Evaluates the sine Fresnel integral. 

GAMDF 225 Evaluates the gamma distribution function. 

GAMI 59 Evaluates the incomplete gamma function. 

GAMIC 61 Evaluates the complementary incomplete gamma 
function. 

GAMIT 63 Evaluates the Tricomi form of the incomplete gamma 
function. 

GAMMA 51 Evaluates the real or complex gamma function, 
(x). 

GAMR 54 Evaluates the reciprocal of the real or complex gamma  
function, 1/
(x). 

GCDF 233 Evaluates a general continuous cumulative distribution 
function given ordinates of the density. 

GCIN 236 Evaluates the inverse of a general continuous cumulative 
distribution function given ordinates of the density. 

HYPDF 194 Evaluates the hypergeometric distribution function. 

HYPPR 196 Evaluates the hypergeometric probability function. 

IERCD 262 Retrieves the integer code for an informational error. 

IFNAN 266 Checks if a value is NaN (not a number). 
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IMACH 263 Retrieves integer machine constants. 

INITS 256 Initializes the orthogonal series so the function value is 
the number of terms needed to insure the error is no 
larger than the requested accuracy. 

IWKCIN 271 Initializes bookkeeping locations describing the character 
workspace stack. 

IWKIN 270 Initializes bookkeeping locations describing the 
workspace stack. 

LOG10 5 Evaluate the complex base 10 logarithm, log�� z. 

MATCE 244 Evaluates a sequence of even, periodic, integer order, real 
Mathieu functions. 

MATEE 241 Evaluates the eigenvalues for the periodic Mathieu 
functions. 

MATSE 248 Evaluates a sequence of odd, periodic, integer order, real 
Mathieu functions. 

N1RTY 262 Retrieves the error type set by the most recently called 
IMSL routine. 

POCH 66 Evaluates a generalization of Pochhammer�s symbol. 

POCH1 67 Evaluates a generalization of Pochhammer�s symbol 
starting from the first order. 

POIDF 197 Evaluates the Poisson distribution function. 

POIPR 199 Evaluates the Poisson probability function. 

PSI 64 Evaluates the real or complex psi function, �(x). 

SHI 42 Evaluates the hyperbolic sine integral. 

SI 38 Evaluates the sine integral. 

SINDG 13 Evaluates the sine for the argument in degrees. 

SPENC 255 Evaluates a form of Spence�s integral. 

TAN 10 Evaluates tan z for complex z. 

TDF 227 Evaluates the Student�s t distribution function. 

TIN 229 Evaluates the inverse of the Student�s t distribution 
function. 

TNDF 231 Evaluates the noncentral Student�s t distribution function. 

UMACH 267 Set or Retrieves input or output device unit numbers. 
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Product Support 

Contacting Visual Numerics Support 
Users within support warranty may contact Visual Numerics regarding the use of the IMSL 
Libraries. Visual Numerics can consult on the following topics: 

 Clarity of documentation 

 Possible Visual Numerics-related programming problems 

 Choice of IMSL Libraries functions or procedures for a particular problem 

 Evolution of the IMSL Libraries 

Not included in these consultation topics are mathematical/statistical consulting and debugging of 
your program.  

Consultation 
Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing: 

  support@houston.vni.com. 

The following describes the procedure for consultation with Visual Numerics. 

1. Include your serial (or license) number 

2. Include the product name and version number: IMSL Fortran Library Version 5.0 

3. Include compiler and operating system version numbers 

4. Include the name of the routine for which assistance is needed and a description of the 
problem 
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Index 

A 

adjoint matrix x 
Airy function 149 

derivative 152 
exponentially scaled 154 

derivative 157 
second kind 150 

derivative 153 
exponentially scaled 155 
exponentially scaled derivative 

158 
arguments, optional subprogram 

xii 

B 

Bessel functions 91 
first kind 

integer order 109, 4 
order one 94 
order zero 92 
real order 113, 123 

modified 
exponentially scaled 104, 106, 

107, 108, 118, 121 
first kind, integer order 111, 5, 3 
first kind, nonnegative real order 

118 
first kind, order one 100, 106 
first kind, order zero 98, 104 
first kind, real order 117, 127 
second kind, real order 129 
third kind, fractional order 120, 

121 
third kind, order one 103, 108 
third kind, order zero 101, 107 

second kind 
order one 97 
order zero 95 
real nonnegative order 115 
real order 125 

beta functions 
complete 51, 69 

natural logarithm 71 
incomplete 73 

binomial coefficient 50 

C 

Cauchy principal value 32, 33 
character workspace 271 
characteristic values 241 
Chebyshev series 253, 257 
complex numbers 

evaluating 1 
cosine 

arc 
hyperbolic 25 

complex 17 
hyperbolic 21 

in degrees 14 
integrals 39, 40 

hyperbolic 43, 44 
cotangent 

evaluating 11 
cube roots 

evaluating 2 
cumulative distribution functions 

(CDF) 186 

D 

Dawson�s function 
evaluating 85 

Dawson's function 75 
distribution functions 186 

beta 209 
inverse 212 

binomial 190 
bivariate normal 213 
chi-squared 215 

inverse 217 
noncentral 219 

cumulative (CDF) 186 
F 222 

inverse 223 
gamma 225 
general continuous cumulative 233 

inverse 236 
hypergeometric 194 
Kolmogorov-Smirnov goodness of 

fit 204 
Poisson 197 
standard normal (Gaussian) 206 

inverse 208 
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Student's t 227 
noncentral 231 

DOUBLE PRECISION types ix 

E 

eigenvalues 241 
elementary functions viii, 1 
elliptic functions 173 
elliptic integrals 161 

complete 163 
second kind 165 

first kind 
Carlson's incomplete 166 

second kind 
Carlson's incomplete 167 

third kind 
Carlson's incomplete 169 

Erlang distribution 226 
error functions 75, 76 

complementary 77 
complex scaled 80 
exponentially scaled 79 
inverse 83 

inverse 82 
error handling 262 
error-handling xi, xiii 
errors 259, 261 

alert 190, 260 
fatal 260 
informational 259 
note 190, 260 
severity level xii 
terminal 190, 259, 260 
warning 190, 260 

exponential functions 
first order 4 

exponential integrals 31, 32, 33 
of integer order 35 

F 

factorial 48 
Fresnal integrals 75 

cosine 86 
sine 88 
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gamma distributions 
standard 186 

gamma functions 47 
complete 51 
incomplete 59 

complementary 61 
Tricomi form 63 

logarithmic derivative 64 
reciprocal 54 

getting started xii 

H 

hyperbolic functions viii, 9 

I 
INTEGER types ix 

J 

Jacobi elliptic function 178, 180, 
182, 6, 5 

K 

Kelvin function 
first kind 

order one 145 
order zero 135, 136, 139, 140 

second kind 
order one 146, 147 
order zero 137, 138, 141, 142 

Kolmogorov-Smirnov goodness of 
fit D-test statistic 204 

L 

library subprograms x 
logarithmic integrals 36 
logarithms 

complex 
common 5 

for gamma functions 55, 57 
natural 6, 71 

M 

machine-dependent constants 263 
Mathieu functions 241 

even 244 
integer order 244, 248 
odd 248 
periodic 241, 244, 248 
real 244, 248 

matrices 
adjoint x 
orthogonal x 
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unitary x 

N 

naming conventions ix 
NaN 190 

O 

optional argument xii 
optional data xii 
optional subprogram arguments 

xii 
orthogonal 

matrix x 
orthogonal series 256 

P 

Pochhammer's symbol 66, 67, 253 
printing 261 
printing results xiii 
probability density function (PDF) 

187 
probability distribution functions 185 

inverses 185 
probability functions 186 

binomial 191 
hypergeometric 196 
Poisson 199 

R 

REAL types ix 
required arguments xii 
reserved names 269 

S 

sine 
arc 

hyperbolic 24 
complex 

arc 16 
hyperbolic 20 

in degrees 13 
integrals 38 

hyperbolic 42 
single precision vii 
Spence's integral 255 
subprograms 

library x 
optional arguments xii 

T 

tangent 
arc 

hyperbolic 27 
complex 10 

arc 18 
arc of a ratio 19 
hyperbolic 23 

Taylor series 253 
trigonometric functions viii, 9 

U 

underflow x 
unitary matrix x 
user interface vii 
using library subprograms x 

W 

Weierstrass' function 
equianharmonic case 176, 177 
lemniscatic case 173, 175 

workspace allocation 270 
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