
Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Special Functions

Trusted For Over Years30

Mathematical Functions in Fortran

IMSL MATH/LIBRARY User’s Guide
Special Functions

P/N 7681 [w w w . v n i . c o m]

Visual Numerics, Inc. � United States
Corporate Headquarters
2000 Crow Canyon Place, Suite 270
San Ramon, CA 94583
PHONE: 925-807-0138
FAX: 925-807-0145
e-mail: info@vni.com
Westminster, CO
PHONE: 303-379-3040

Houston, TX
PHONE: 713-784-3131

Visual Numerics International Ltd.
Centennial Court
Easthampstead Road
Bracknell, Berkshire RG12 1YQ
UNITED KINGDOM

PHONE: +44 (0) 1344-458700
FAX: +44 (0) 1344-458748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Immeuble le Wilson 1
70, avenue due General de Gaulle
F-92058 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-55-514-9730 or 9628
FAX: +52-55-514-4873

Visual Numerics International GmbH
Zettachring 10
D-70567Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 102

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: +(886) 2-2727-2255
FAX: +(886) 2-2727-6798
e-mail: info@vni.com.tw

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: info@vni.co.kr

World Wide Web site: http://www.vni.com

COPYRIGHT NOTICE: Copyright 1994-2003 by Visual Numerics, Inc. All rights reserved. Unpublished�rights reserved under the
copyright laws of the United States.
Printed in the USA.

The information contained in this document is subject to change without notice.

This document is provided AS IS, with NO WARRANTY. VISUAL NUMERICS, INC., SHALL NOT BE LIABLE FOR ANY
ERRORS WHICH MAY BE CONTAINED HEREIN OR FOR INCIDENTAL, CONSEQUENTIAL, OR OTHER INDIRECT
DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL. [Carol: note case
change]

IMSL, PV- WAVE, and Visual Numerics are registered in the U.S. Patent and Trademark Office by, and PV- WAVE Advantage is a
trademark of, Visual Numerics, Inc.

TRADEMARK NOTICE: The following are trademarks or registered trademarks of their respective owners, as follows: Microsoft,
Windows, Windows 95, Windows NT, Internet Explorer � Microsoft Corporation; Motif � The Open Systems Foundation, Inc.;
PostScript � Adobe Systems, Inc.; UNIX � X/Open Company, Limited; X Window System, X11 � Massachusetts Institute of
Technology; RISC System/6000 and IBM � International Business Machines Corporation; Sun, Java, JavaBeans � Sun
Microsystems, Inc.; JavaScript, Netscape Communicator � Netscape, Inc.; HPGL and PCL � Hewlett Packard Corporation; DEC,
VAX, VMS, OpenVMS � Compaq Information Technologies Group, L.P./Hewlett Packard Corporation; Tektronix 4510 Rasterizer �
Tektronix, Inc.; IRIX, TIFF � Silicon Graphics, Inc.; SPARCstation � SPARC International, licensed exclusively to Sun
Microsystems, Inc.; HyperHelp � Bristol Technology, Inc. Other products and company names mentioned herein are trademarks of
their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information. No part of this document may be reproduced or transmitted in any form without the prior written consent of
Visual Numerics.

RESTRICTED RIGHTS NOTICE: This documentation is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the
US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer software � Restricted Rights clause
at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual
Numerics, Inc., 2500 Wilcrest Drive, Suite 200, Houston, TX 77042-2759.

IMSL Fortran, C, and Java
Application Development Tools

IMSL MATH/LIBRARY Special Functions Contents � i

Contents

Introduction vii

Chapter 1: Elementary Functions 1

Chapter 2: Trigonometric and Hyperbolic Functions 9

Chapter 3: Exponential Integrals and Related Functions 31

Chapter 4: Gamma Function and Related Functions 47

Chapter 5: Error Function and Related Functions 75

Chapter 6: Bessel Functions 91

Chapter 7: Kelvin Functions 133

Chapter 8: Airy Functions 149

Chapter 9: Elliptic Integrals 161

Chapter 10: Elliptic and Related Functions 173

Chapter 11: Probability Distribution Functions and Inverses 185

Chapter 12: Mathieu Functions 241

Chapter 13: Miscellaneous Functions 253

ii � Contents IMSL MATH/LIBRARY Special Functions

Reference Material 259

GAMS Index A-1

Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

IMSL MATH/LIBRARY Special Functions Introduction � vii

Introduction

The IMSL Fortran Libraries
The IMSL Libraries consist of two separate, but coordinated Libraries that allow easy user access.
These Libraries are organized as follows:

� MATH/LIBRARY general applied mathematics and special functions

 The User�s Guide for IMSL MATH/LIBRARY has two parts:

1. MATH/LIBRARY (Volumes 1 and 2)

2. MATH/LIBRARY Special Functions

� STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines are
also available for complex and complex-double precision arithmetic. The same user interface is
found on the many hardware versions that span the range from personal computer to
supercomputer. Note that some IMSL routines are not distributed for FORTRAN compiler
environments that do not support double precision complex data. The specific names of the IMSL
routines that return or accept the type double complex begin with the letter �Z� and, occasionally,
�DC.�

Getting Started
IMSL MATH/LIBRARY Special Functions is a collection of FORTRAN subroutines and
functions useful in research and statistical analysis. Each routine is designed and documented to be
used in research activities as well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other
language) to call the MATH/LIBRARY Special Functions routine. Each routine conforms to
established conventions in programming and documentation. We give first priority in development
to efficient algorithms, clear documentation, and accurate results. The uniform design of the
routines makes it easy to use more than one routine in a given application. Also, you will find that
the design consistency enables you to apply your experience with one MATH/LIBRARY Special
Functions routine to all other IMSL routines that you use.

viii � Introduction IMSL MATH/LIBRARY Special Functions

Finding the Right Routine
The organization of IMSL MATH/LIBRARY Special Functions closely parallels that of the
National Bureau of Standards� Handbook of Mathematical Functions, edited by Abramowitz and
Stegun (1964). Corresponding to the NBS Handbook, functions are arranged into separate
chapters, such as elementary functions, trigonometric and hyperbolic functions, exponential
integrals, gamma function and related functions, and Bessel functions. To locate the right routine
for a given problem, you may use either the table of contents located in each chapter introduction,
or one of the indexes at the end of this manual. GAMS index uses GAMS classification (Boisvert,
R.F., S.E. Howe, D.K. Kahaner, and J.L. Springmann 1990, Guide to Available Mathematical
Software, National Institute of Standards and Technology NISTIR 90-4237). Use the GAMS index
to locate which MATH/LIBRARY Special Functions routines pertain to a particular topic or
problem.

Organization of the Documentation
This manual contains a concise description of each routine, with at least one demonstrated exam-
ple of each routine, including sample input and results. You will find all information pertaining to
the Special Functions Library in this manual. Moreover, all information pertaining to a particular
routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines
included in the chapter. Documentation of the routines consists of the following information:

� IMSL Routine�s Generic Name

� Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

� Function Return Value: a description of the return value (for functions only).

� Required Arguments: a description of the required arguments in the order of their
occurrence. Input arguments usually occur first, followed by input/output arguments, with
output arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this
argument; cannot be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input or output.
See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine
returns output through this argument.

� Optional Arguments: a description of the optional arguments in the order of their
occurrence.

� Fortran 90 Interface: a section that describes the generic and specific interfaces to the
routine.

� Fortran 77 Style Interfaces: an optional section, which describes Fortran 77 style interfaces,
is supplied for backwards compatibility with previous versions of the Library.

IMSL MATH/LIBRARY Special Functions Introduction � ix

� Example: at least one application of this routine showing input and required dimension and
type statements.

� Output: results from the example.

� Comments: details pertaining to code usage.

� Description: a description of the algorithm and references to detailed information. In many
cases, other IMSL routines with similar or complementary functions are noted.

� Programming notes: an optional section that contains programming details not covered
elsewhere.

� References: periodicals and books with details of algorithm development.

� Additional Examples: an optional section with additional applications of this routine
showing input and required dimension and type statements.

Naming Conventions
The names of the routines are mnemonic and unique. Most routines are available in both a single
precision and a double precision version, with names of the two versions sharing a common root.
The root name is also the generic interface name. The name of the double precision specific
version begins with a �D_.� The single precision specific version begins with an �S_�. For
example, the following pairs are precision specific names of routines in the two different
precisions: S_GAMDF/D_GAMDF (the root is �GAMDF ,� for �Gamma distribution function�) and
S_POIDF/D_POIDF (the root is �POIDF,� for �Poisson distribution function�). The precision
specific names of the IMSL routines that return or accept the type complex data begin with the
letter �C_� or �Z_� for complex or double complex, respectively. Of course the generic name can
be used as an entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the
documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where
standard names are already established, the standard names are used as the precision specific
names. There may also be other interfaces supplied to the routine to provide for backwards
compatibility with previous versions of the Library. These alternate interfaces are noted in the
documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow
the FORTRAN default type for integer and floating point. In other words, a variable whose name
begins with one of the letters �I� through �N� is of type INTEGER, and otherwise is of type REAL
or DOUBLE PRECISION, depending on the precision of the routine.

An assumed-size array with more than one dimension that is used as a FORTRAN argument can
have an assumed-size declarator for the last dimension only. In the MATH/LIBRARY Special
Functions routines, the information about the first dimension is passed by a variable with the
prefix �LD� and with the array name as the root. For example, the argument LDA contains the
leading dimension of array A. In most cases, information about the dimensions of arrays is
obtained from the array through the use of Fortran 90�s size function. Therefore, arguments
carrying this type of information are usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the
MATH/LIBRARY Special Functions. For example, in the routines for random number generation,

x � Introduction IMSL MATH/LIBRARY Special Functions

NR denotes the number of random numbers to be generated, and R or IR denotes the array that
stores the numbers.

When writing programs accessing the MATH/LIBRARY Special Functions , the user should
choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or
named common blocks. The careful user can avoid any conflicts with IMSL names if, in choosing
names, the following rules are observed:

� Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of
the User�s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

� Do not choose a name consisting of more than three characters with a numeral in the
second or third position.

For further details, see the section on �Reserved Names� in the Reference Material.

Using Library Subprograms
The documentation for the routines uses the generic name and omits the prefix, and hence the
entire suite of routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this
principle, note the BSJNS documentation (see Chapter 6, Bessel Functions, of this manual). A
description is provided for just one data type. There are four documented routines in this subject
area: S_BSJNS, D_BSJNS, C_BSJNS, and Z_BSJNS.

These routines constitute single-precision, double-precision, complex, and complex double-
precision versions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with
the routines. The naming convention for modules joins the suffix �_int� to the generic routine
name. Thus, the line �use BSJNS_INT� is inserted near the top of any routine that calls the
subprogram �BSJNS�. More inclusive modules are also available. For example, the module named
�imsl_libraries� contains the interface modules for all routines in the library.

When dealing with a complex matrix, all references to the transpose of a matrix, AT , are replaced
by the adjoint matrix

A A AT H
� �

�
where the overstrike denotes complex conjugation. IMSL Fortran Library linear algebra software
uses this convention to conserve the utility of generic documentation for that code subject.
References to orthogonal matrices are replaced by their complex counterparts, unitary matrices.
Thus, an n � n orthogonal matrix Q satisfies the condition Q Q IT

n� . An n � n unitary matrix V
satisfies the analogous condition for complex matrices, V V In

*
� .

Programming Conventions
In general, the IMSL MATH/LIBRARY Special Functions codes are written so that computations
are not affected by underflow, provided the system (hardware or software) places a zero value in
the register. In this case, system error messages indicating underflow should be ignored.

IMSL MATH/LIBRARY Special Functions Introduction � xi

IMSL codes also are written to avoid overflow. A program that produces system error messages
indicating overflow should be examined for programming errors such as incorrect input data,
mismatch of argument types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure
of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly.
This error-handling capability provides automatic protection for the user without requiring the user
to make any specific provisions for the treatment of error conditions. See the section on �User
Errors� in the Reference Material for further details.

Module Usage
Users are required to incorporate a �use� statement near the top of their program for the IMSL
routine being called when writing new code that uses this library. However, legacy code which
calls routines in the previous version of the library without the presence of a �use� statement will
continue to work as before. The example programs throughout this manual demonstrate the
syntax for including use statements in your program. In addition to the examples programs,
common cases of when and how to employ a use statement are described below.

�� Users writing new programs calling the generic interface to IMSL routines must include a use
statement near the top of any routine that calls the IMSL routines. The naming convention for
modules joins the suffix �_int� to the generic routine name. For example, if a new program
is written calling the IMSL routines LFTRG and LFSRG, then the following use statements
should be inserted inserted near the top of the program
USE LFTRG_INT
USE LFSRG_INT

In addition to providing interface modules for each routine individually, we also provide a
module named �imsl_libraries�, which contains the generic interfaces for all routines in
the library. For programs that call several different IMSL routines using generic interfaces, it
can be simpler to insert the line
USE IMSL_LIBRARIES

rather than list use statements for every IMSL subroutine called.

�� Users wishing to update existing programs to call other routines from this library should
incorporate a use statement for the new routine being called. (Here, the term �new routine�
implies any routine in the library, only �new� to the user�s program.) For example, if a call
to the generic interface for the routine LSARG is added to an existing program, then
USE LSARG_INT

should be inserted near the top of your program.

�� Users wishing to update existing programs to call the new generic versions of the routines
must change their calls to the existing routines to match the new calling sequences and use
either the routine specific interface modules or the all encompassing �imsl_libraries�
module.

xii � Introduction IMSL MATH/LIBRARY Special Functions

�� Code which employed the �use numerical_libraries� statement from the previous
version of the library will continue to work properly with this version of the library.

Programming Tips
It is strongly suggested that users force all program variables to be explicitly typed. This is done
by including the line �IMPLICIT NONE� as close to the first line as possible. Study some of the
examples accompanying an IMSL Fortran Library routine early on. These examples are available
online as part of the product.

Each subject routine called or otherwise referenced requires the �use� statement for an interface
block designed for that subject routine. The contents of this interface block are the interfaces to the
separate routines available for that subject. Packaged descriptive names for option numbers that
modify documented optional data or internal parameters might also be provided in the interface
block. Although this seems like an additional complication, many typographical errors are avoided
at an early stage in development through the use of these interface blocks. The �use� statement is
required for each routine called in the user�s program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then
the �use� statements are not required.

Optional Subprogram Arguments
IMSL Fortran Library routines have required arguments and may have optional arguments. All
arguments are documented for each routine. For example, consider the routine GCIN that evaluates
the inverse of a general continuous CDF. The required arguments are P, X, and F. The optional
arguments are IOPT and M. Both IOPT and M take on default values so are not required as input by
the user unless the user wishes for these arguments to take on some value other than the default.
Often there are other output arguments that are listed as optional because although they may
contain information that is closely connected with the computation they are not as compelling as
the primary problem. In our example code, GCIN, if the user wishes to input the optional argument
�IOPT� then the use of the keyword �IOPT=� in the argument list to assign an input value to IOPT
would be necessary.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES
interface module includes backwards compatible positional argument interfaces to all routines
which existed in the Fortran 77 version of the Library. Note that it is not necessary to use �use�
statements when calling these routines by themselves. Existing programs which called these
routines will continue to work in the same manner as before.

Error Handling
The routines in IMSL MATH/LIBRARY Special Functions attempt to detect and report errors and
invalid input. Errors are classified and are assigned a code number. By default, errors of moderate
or worse severity result in messages being automatically printed by the routine. Moreover, errors
of worse severity cause program execution to stop. The severity level as well as the general nature
of the error is designated by an �error type� with numbers from 0 to 5. An error type 0 is no error;
types 1 through 5 are progressively more severe. In most cases, you need not be concerned with

IMSL MATH/LIBRARY Special Functions Introduction � xiii

our method of handling errors. For those interested, a complete description of the error-handling
system is given in the Reference Material, which also describes how you can change the default
actions and access the error code numbers.

Printing Results
None of the routines in IMSL MATH/LIBRARY Special Functions print results (but error
messages may be printed). The output is returned in FORTRAN variables, and you can print these
yourself.

The IMSL routine UMACH (see the Reference Material section of this manual) retrieves the
FORTRAN device unit number for printing. Because this routine obtains device unit numbers, it
can be used to redirect the input or output. The section on �Machine-Dependent Constants� in the
Reference Material contains a description of the routine UMACH.

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions � 1

Chapter 1: Elementary Functions

Routines
Evaluates the argument of a complex numberCARG 1
Evaluates the cube root of a real or complex number 3 x CBRT 2
Evaluates (ex � 1)/x for real or complex x EXPRL 3
Evaluates the complex base 10 logarithm, log�� z LOG10 5
Evaluates ln(x + 1) for real or complex xALNREL 6

Usage Notes
The �relative� function EXPRL (page 3) is useful for accurately computing ex � 1 near x = 0.
Computing ex � 1 using EXP(X) ��1 near x = 0 is subject to large cancellation errors.

Similarly, ALNREL (page 5) can be used to accurately compute ln(x + 1) near x = 0. Using the
routine ALOG to compute ln(x + 1) near x = 0 is subject to large cancellation errors in the
computation of 1 + X.

CARG
This function evaluates the argument of a complex number.

Function Return Value
CARG � Function value. (Output)

If z = x + iy, then arctan(y/x) is returned except when both x and y are zero. In this case,
zero is returned.

Required Arguments
Z � Complex number for which the argument is to be evaluated. (Input)

FORTRAN 90 Interface
Generic: CARG (Z)

2 � Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

Specific: The specific interface names are S_CARG and D_CARG.

FORTRAN 77 Interface
Single: CARG (Z)

Double: The double precision function name is ZARG.

Example
In this example, Arg(1 + i) is computed and printed.

 USE CARG_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE
 COMPLEX Z
! Compute
 Z = (1.0, 1.0)
 VALUE = CARG(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CARG(�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
CARG(1.000, 1.000) = 0.785

Description

Arg(z) is the angle � in the polar representation z = |z| ei �, where

1i � �

If z = x + iy, then � = tan��(y/x) except when both x and y are zero. In this case, � is defined to be
zero.

CBRT
This funcion evaluates the cube root.

Function Return Value
CBRT � Function value. (Output)

Required Arguments
X � Argument for which the cube root is desired. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions � 3

FORTRAN 90 Interface
Generic: CBRT (X)

Specific: The specific interface names are S_CBRT, D_CBRT, C_CBRT, AND Z_CBRT.

FORTRAN 77 Interface
Single: CBRT (X)

Double: The double precision name is DCBRT.

Complex: The complex precision name is CCBRT.

Double Complex: The Double complex precision name is ZCBRT.

Example
In this example, the cube root of 3.45 is computed and printed.

 USE CBRT_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 3.45
 VALUE = CBRT(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� CBRT(�, F6.3, �) = �, F6.3)
 END

Output
CBRT(3.450) = 1.511

Comments
For complex arguments, the branch cut for the cube root is taken along the negative real axis.
The argument of the result, therefore, is greater than ��/3 and less than or equal to �/3. The
other two roots are obtained by rotating the principal root by ��/3 and �/3.

Description
The function CBRT(X) evaluates x���. All arguments are legal. For complex argument, x, the
value of |x| must not overflow.

Additional Example
In this example, the cube root of �3 + 0.0076i is computed and printed.

4 � Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

 USE UMACH_INT
 USE CBRT_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (-3.0, 0.0076)
 VALUE = CBRT(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CBRT((�, F7.4, �,�, F7.4, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
CBRT((-3.0000, 0.0076)) = (0.722, 1.248)

EXPRL
This function evaluates the exponential function factored from first order, (EXP(X) � 1.0)/X.

Function Return Value
EXPRL � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: EXPRL (X)

Specific: The specific interface names are S_EXPRL, D_EXPRL, and C_EXPRL.

FORTRAN 77 Interface
Single: EXPRL (X)

Double: The double precision function name is DEXPRL.

Complex: The complex name is CEXPRL.

Example
In this example, EXPRL(0.184) is computed and printed.

 USE EXPRL_INT
 USE UMACH_INT

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions � 5

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.184
 VALUE = EXPRL(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� EXPRL(�, F6.3, �) = �, F6.3)
 END

Output
EXPRL(0.184) = 1.098

Description

The function EXPRL(X) evaluates (ex � 1)/x. It will overflow if ex overflows. For complex
arguments, z, the argument z must not be so close to a multiple of 2�i that substantial
significance is lost due to cancellation. Also, the result must not overflow and |�z| must not be
so large that the trigonometric functions are inaccurate.

Additional Example
In this example, EXPRL(0.0076i) is computed and printed.

 USE EXPRL_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.0, 0.0076)
 VALUE = EXPRL(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� EXPRL((�, F7.4, �,�, F7.4, �)) = (�, &
 F6.3, �,� F6.3, �)�)
 END

Output
EXPRL((0.0000, 0.0076)) = (1.000, 0.004)

LOG10
This function extends FORTRAN�s generic log10 function to evauate the principal value of the
complex common logarithm.

Function Return Value
LOG10 � Complex function value. (Output)

6 � Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

Required Arguments
Z � Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: LOG10 (Z)

Specific: The specific interface names are CLOG10 and ZLOG10.

FORTRAN 77 Interface
Complex: CLOG10 (Z)

Double complex: The double complex function name is ZLOG10.

Example
In this example, the log��(0.0076i) is computed and printed.

 USE LOG10_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.0, 0.0076)
 VALUE = LOG10(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� LOG10((�, F7.4, �,�, F7.4, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
LOG10((0.0000, 0.0076)) = (-2.119, 0.682)

Description
The function LOG10(Z) evaluates log��(z) . The argument must not be zero, and |z| must not
overflow.

ALNREL
This function evaluates the natural logarithm of one plus the argument, or, in the case of complex
argument, the principal value of the complex natural logarithm of one plus the argument.

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions � 7

Function Return Value
ALNREL � Function value. (Output)

Required Arguments
X � Argument for the function. (Input)

FORTRAN 90 Interface
Generic: ALNREL (X)

Specific: The specific interface names are S_ALNREL, D_ALNREL, and C_ALNREL.

FORTRAN 77 Interface
Single: ALNREL (X)

Double: The double precision name function is DLNREL.

Complex: The comlpex name is CLNREL.

Example
In this example, ln(1.189) = ALNREL(0.189) is computed and printed.

 USE ALNREL_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.189
 VALUE = ALNREL(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ALNREL(�, F6.3, �) = �, F6.3)
 END

Output
ALNREL(0.189) = 0.173

Comments
1. Informational error

Type Code

 3 2 Result of ALNREL(X) is accurate to less than one-half precision
because X is too near �1.0.

8 � Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

2. ALNREL evaluates the natural logarithm of (1 + X) accurate in the sense of relative
error even when X is very small. This routine (as opposed to the intrinsic ALOG) should
be used to maintain relative accuracy whenever X is small and accurately known.

Description
For real arguments, the function ALNREL(X) evaluates ln(1 + x) for x > �1. The argument x must
be greater than �1.0 to avoid evaluating the logarithm of zero or a negative number. In addition,
x must not be so close to �1.0 that considerable significance is lost in evaluating 1 + x.

For complex arguments, the function CLNREL(Z) evaluates ln(1 + z). The argument z must not
be so close to �1 that considerable significance is lost in evaluating 1 + z. If it is, a recoverable
error is issued; however, z = �1 is a fatal error because ln(1 + z) is infinite. Finally, |z| must not
overflow.

Let 	 = |z|, z = x + iy and r� = |1 + z|� = (1 + x)� + y� = 1 + 2x + 	�. Now, if 	 is small, we may
evaluate CLNREL(Z) accurately by

 log(1 + z) = log r + iArg(z + 1)

 = 1/2 log r� + iArg(z + 1)

 = 1/2 ALNREL(2x + 	�) + iCARG(1 + z)

Additional Example
In this example, ln(0.0076i) = ALNREL(�1 + 0.0076i) is computed and printed.

 USE UMACH_INT
 USE ALNREL_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (-1.0, 0.0076)
 VALUE = ALNREL(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ALNREL((�, F8.4, �,�, F8.4, �)) = (�, &
 F8.4, �,�, F8.4, �)�)
 END

Output
ALNREL((-1.000, .0076)) = (-4.880, 1.571)

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 9

Chapter 2: Trigonometric and
Hyperbolic Functions

Routines
2.1 Trigonometric Functions

Evaluates tan z for complex z...TAN 10
Evaluates cot x for real x ... COT 11
Evaluates sin x for x a real angle in degrees........................SINDG 13
Evaluates cos x for x a real angle in degrees.....................COSDG 14
Evaluates sin�� z for complex z..ASIN 16
Evaluates cos�� z for complex z...ACOS 17
Evaluates tan�� z for complex z ... ATAN 18
Evaluates tan��(x/y) for x and y complex ATAN2 19

2.2 Hyperbolic Functions
Evaluates sinh z for complex z ... SINH 20
Evaluates cosh z for complex z ...COSH 21
Evaluates tanh z for complex z.. TANH 23

2.3 Inverse Hyperbolic Functions
Evaluates sinh�� x for real or complex xASINH 24
Evaluates cosh�� x for real or complex x ACOSH 25
Evaluates tanh�� x for real or complex xATANH 27

Usage Notes
The complex inverse trigonometric hyperbolic functions are single-valued and regular in a slit
complex plane. The branch cuts are shown below for z = x + iy, i.e., x =
z and y = �z are the real
and imaginary parts of z, respectively.

10 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

� 1 + 1
x

y

x

y
+ i

� i

 sin��z, cos��z and tanh��(z) tan��z and sinh��z

+ 1
x

y

 cosh��z

Branch Cuts for Inverse Trigonometric and Hyperbolic Functions

TAN
This function extends FORTRAN�s generic tan to evaluate the complex tangent.

Function Return Value
TAN � Complex function value. (Output)

Required Arguments
Z � Complex number representing the angle in radians for which the tangent is desired.

(Input)

FORTRAN 90 Interface
Generic: TAN(Z)

Specific: The specific interface names are CTAN and ZTAN.

FORTRAN 77 Interface
Complex : CTAN(Z)

Double complex: The double complex function name is ZTAN.

Example
In this example, tan(1 + i) is computed and printed.

 USE TAN_INT
 USE UMACH_INT
! Declare variables

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 11

 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.0, 1.0)
 VALUE = TAN(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� TAN((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
TAN((1.000, 1.000)) = (0.272, 1.084)

Comments
Informational error
Type Code

 3 2 Result of CTAN(Z) is accurate to less than one-half precision because the
 real part of Z is too near �/2 or 3�/2 when the imaginary part of Z is near
 zero or because the absolute value of the real part is very large and the
 absolute value of the imaginary part is small.

Description
Let z = x + iy. If |cos z|� is very small, that is, if x is very close to �/2 or 3�/2 and if y is small,
then tan z is nearly singular and a fatal error condition is reported. If |cos z|� is somewhat larger
but still small, then the result will be less accurate than half precision. When 2x is so large that
sin 2x cannot be evaluated to any nonzero precision, the following situation results. If |y| < 3/2,
then CTAN cannot be evaluated accurately to better than one significant figure. If 3/2 � |y| < �1/2
ln �/2, then CTAN can be evaluated by ignoring the real part of the argument; however, the
answer will be less accurate than half precision. Here, � = AMACH(4) is the machine precision.

COT
This function evaluates the cotangent.

Function Value Return
COT � Function value. (Output)

Required Arguments
X � Angle in radians for which the cotangent is desired. (Input)

FORTRAN 90 Interface
Generic: COT (X)

12 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Specific: The specific interface names are COT, DCOT, CCOT, and ZCOT.

FORTRAN 77 Interface
Single: COT (X)

Double: The double precision function name is DCOT.

Complex: The complex name is CCOT.

Double Complex: The double complex name is ZCOT.

Example
In this example, cot(0.3) is computed and printed.

 USE COT_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.3
 VALUE = COT(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� COT(�, F6.3, �) = �, F6.3)
 END

Output
COT(0.300) = 3.233

Comments
1. Informational error for Real arguments:

Type Code

 3 2 Result of COT(X) is accurate to less than one-half precision because
ABS(X) is too large, or X is nearly a multiple of �.

 Informational error for complex arguments
Type Code

 3 2 Result of CCOT(Z) is accurate to less than one-half precision because
the real part of Z is too near a multiple of � when the imaginary part
of Z is zero, or because the absolute value of the real part is very
large and the absolute value of the imaginary part is small

2. Referencing COT(X) is NOT the same as computing 1.0/TAN(X) because the error
conditions are quite different. For example, when X is near �/2, TAN(X) cannot be

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 13

evaluated accurately and an error message must be issued. However, COT(X) can be
evaluated accurately in the sense of absolute error.

Description
For real x, the magnitude of x must not be so large that most of the computer word contains the
integer part of x. Likewise, x must not be too near an integer multiple of �, although x close to
the origin causes no accuracy loss. Finally, x must not be so close to the origin that COT(X) 1/x
overflows.

For complex arguments, let z = x + iy. If |sin z|� is very small, that is, if x is very close to a
multiple of � and if |y| is small, then cot z is nearly singular and a fatal error condition is
reported. If |sin z|� is somewhat larger but still small, then the result will be less accurate than
half precision. When |2x| is so large that sin 2x cannot be evaluated accurately to even zero
precision, the following situation results. If |y| < 3/2, then CCOT cannot be evaluated accurately
to be better than one significant figure. If 3/2 � |y| < �1/2 ln �/2, where � = AMACH(4) is the
machine precision, then CCOT can be evaluated by ignoring the real part of the argument;
however, the answer will be less accurate than half precision. Finally, |z| must not be so small
that cot z 1/z overflows.

Additional Example
In this example, cot(1 + i) is computed and printed.

 USE COT_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.0, 1.0)
 VALUE = COT(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� COT((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
COT((1.000, 1.000)) = (0.218,-0.868)

SINDG
This function evaluates the sine for the argument in degrees.

Function Return Value
SINDG � Function value. (Output)

14 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Required Arguments
X � Argument in degrees for which the sine is desired. (Input)

FORTRAN 90 Interface
Generic: SINDG (X)

Specific: The specific interface names are S_SINDG and D_SINDG.

FORTRAN 77 Interface
Single: SINDG (X)

Double: The double precision function name is DSINDG.

Example
In this example, sin 45� is computed and printed.

 USE SINDG_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 45.0
 VALUE = SINDG(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� SIN(�, F6.3, � deg) = �, F6.3)
 END

Output
SIN(45.000 deg) = 0.707

Description
To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part
fills more than the computer word. Under no circumstances is the magnitude of x allowed to be
larger than the largest representable integer because complete loss of accuracy occurs in this
case.

COSDG
This function evaluates the cosine for the argument in degrees.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 15

Function Return Value
COSDG � Function value. (Output)

Required Arguments
X � Argument in degrees for which the cosine is desired. (Input)

FORTRAN 90 Interface
Generic: COSDG (X)

Specific: The specific interface names are S_COSDG and D_COSDG.

FORTRAN 77 Interface
Single: COSDG (X)

Double: The double precision function name is DCOSDG.

Example
In this example, cos 100� computed and printed.

 USE COSDG_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 100.0
 VALUE = COSDG(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� COS(�, F6.2, � deg) = �, F6.3)
 END

Output
COS(100.00 deg) = -0.174

Description
To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part
fills more than the computer word. Under no circumstances is the magnitude of x allowed to be
larger than the largest representable integer because complete loss of accuracy occurs in this
case.

16 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

ASIN
This function extends FORTRAN�s generic ASIN function to evaluate the complex arc sine.

Function Return Value
ASIN � Complex function value in units of radians and the real part in the first or fourth

quadrant. (Output)

Required Arguments
ZINP � Complex argument for which the arc sine is desired. (Input)

FORTRAN 90 Interface
Generic: ASIN(ZINP)

Specific: The specific interface names are CASIN and ZASIN.

FORTRAN 77 Interface
Complex: CASIN(ZINP)

Double complex: The double complex function name is ZASIN.

Example
In this example, sin��(1 � i) is computed and printed.

 USE ASIN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.0, -1.0)
 VALUE = ASIN(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ASIN((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
ASIN((1.000,-1.000)) = (0.666,-1.061)

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 17

Description
Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH(2)
is the largest floating point number. This error is not detected by ASIN.

See Pennisi (1963, page 126) for reference.

ACOS
This function extends FORTRAN�s generic ACOS function evaluate the complex arc cosine.

Function Return Value
ACOS � Complex function value in units of radians with the real part in the first or second

quadrant. (Output)

Required Arguments
Z � Complex argument for which the arc cosine is desired. (Input)

FORTRAN 90 Interface
Generic: ACOS (Z)

Specific: The specific interface names are CACOS and ZACOS.

FORTRAN 77 Interface
Complex: CACOS (Z)

Double complex: The double complex function name is ZACOS.

Example
In this example, cos��(1 � i) is computed and printed.

 USE ACOS_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.0, -1.0)
 VALUE = ACOS(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ACOS((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

18 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Output
ACOS((1.000,-1.000)) = (0.905, 1.061)

Description
Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH(2)
is the largest floating point number. This error is not detected by ACOS.

ATAN
This function extends FORTRAN�s generic function ATAN to evaluate the complex arc tangent.

Function Return Value
ATAN � Complex function value in units of radians with the real part in the first or fourth

quadrant. (Output)

Required Arguments
Z � Complex argument for which the arc tangent is desired. (Input)

FORTRAN 90 Interface
Generic: ATAN (Z)

Specific: The specific interface names are CATAN and ZATAN.

FORTRAN 77 Interface
Complex: CATAN (Z)

Double complex: The double complex function name is ZATAN.

Example
In this example, tan��(0.01 � 0.01i) is computed and printed.

 USE ATAN_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.01, 0.01)
 VALUE = ATAN(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 19

99999 FORMAT (� ATAN((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
ATAN((0.010, 0.010)) = (0.010, 0.010)

Comments
Informational error

Type Code

 3 2 Result of ATAN(Z) is accurate to less than one-half precision
 because |Z�| is too close to �1.0.

Description
The argument z must not be exactly � i, because tan�� z is undefined there. In addition, z must
not be so close to � i that substantial significance is lost.

ATAN2
This function extends FORTRAN�s generic function ATAN2 to evaluate the complex arc tangent of
a ratio.

Function Return Value
ATAN2 � Complex function value in units of radians with the real part between �� and �.

(Output)

Required Arguments
CSN � Complex numerator of the ratio for which the arc tangent is desired. (Input)

CCS � Complex denominator of the ratio. (Input)

FORTRAN 90 Interface
Generic: ATAN2(CSN, CCS)

Specific: The specific interface names are CATAN2 and ZATAN2.

FORTRAN 77 Interface
Complex: CATAN2(CSN, CCS)

Double complex: The double complex function name is ZATAN2.

20 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Example
In this example,

� � � �1 1/ 2 / 2
tan

2
i

i
�

�

�

is computed and printed.
 USE ATAN2_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, X, Y
! Compute
 X = (2.0, 1.0)
 Y = (0.5, 0.5)
 VALUE = ATAN2(Y, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Y, X, VALUE
99999 FORMAT (� ATAN2((�, F6.3, �,�, F6.3, �), (�, F6.3, �,�, F6.3,&
 �)) = (�, F6.3, �,�, F6.3, �)�)
 END

Output
ATAN2((0.500, 0.500), (2.000, 1.000)) = (0.294, 0.092)

Comments
The result is returned in the correct quadrant (modulo 2�).

Description
Let z� = CSN and z� = CCS. The ratio z = z�/z� must not be � i because tan��(� i) is undefined.
Likewise, z� and z� should not both be zero. Finally, z must not be so close to �i that substantial
accuracy loss occurs.

SINH
This function extends FORTRAN�s generic function SINH to evaluate the complex hyperbolic
sine.

Function Return Value
SINH � Complex function value. (Output)

Required Arguments
Z � Complex number representing the angle in radians for which the complex hyperbolic

sine is desired. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 21

FORTRAN 90 Interface
Generic: SINH(Z)

Specific: The specific interface names are CSINH and ZSINH.

FORTRAN 77 Interface
Complex: CSINH(Z)

Double complex: The double complex function name is ZSINH.

Example
In this example, sinh(5 � i) is computed and printed.

 USE SINH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (5.0, -1.0)
 VALUE = SINH(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� SINH((�, F6.3, �,�, F6.3, �)) = (�,&
 F7.3, �,�, F7.3, �)�)
 END

Output
SINH((5.000,-1.000)) = (40.092,-62.446)

Description
The argument z must satisfy

1/z �� �

where � = AMACH(4) is the machine precision and �z is the imaginary part of z.

COSH
The function extends FORTRAN�s generic function COSH to evaluate the complex hyperbolic
cosine.

Function Return Value
COSH � Complex function value. (Output)

22 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Required Arguments
Z � Complex number representing the angle in radians for which the hyperbolic cosine is

desired. (Input)

FORTRAN 90 Interface
Generic: COSH (Z)

Specific: The specific interface names are CCOSH and ZCOSH.

FORTRAN 77 Interface
Complex: CCOSH (Z)

Double complex: The double complex function name is ZCOSH.

Example
In this example, cosh(�2 + 2i) is computed and printed.

 USE COSH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (-2.0, 2.0)
 VALUE = COSH(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� COSH((�, F6.3, �,�, F6.3, �)) = (�,&
 F6.3, �,�, F6.3, �)�)
 END

Output
COSH((-2.000, 2.000)) = (-1.566,-3.298)

Description
Let � = AMACH(4) be the machine precision. If |�z| is larger than

1/ �

then the result will be less than half precision, and a recoverable error condition is reported. If |�
z| is larger than 1/�, the result has no precision and a fatal error is reported. Finally, if |
z| is too
large, the result overflows and a fatal error results. Here,
z and �z represent the real and
imaginary parts of z, respectively.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 23

TANH
This function extends FORTRAN�s generic function TANH to evaluate the complex hyperbolic
tangent.

Function Return Value
TANH � Complex function value. (Output)

Required Arguments
Z � Complex number representing the angle in radians for which the hyperbolic tangent is

desired. (Input)

FORTRAN 90 Interface
Generic: TANH (Z)

Specific: The specific interface names are CTANH and ZTANH.

FORTRAN 77 Interface
Complex: CTANH (Z)

Double complex: The double complex function name is ZTANH.

Example
In this example, tanh(1 + i) is computed and printed.

 USE TANH_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.0, 1.0)
 VALUE = TANH(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� TANH((�, F6.3, �,�, F6.3, �)) = (�,&
 F6.3, �,�, F6.3, �)�)
 END

Output
TANH((1.000, 1.000)) = (1.084, 0.272)

24 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Description
Let z = x + iy. If |cosh z|� is very small, that is, if y mod 2� is very close to �/2 or 3�/2 and if x is
small, then tanh z is nearly singular; a fatal error condition is reported. If |cosh z|� is somewhat
larger but still small, then the result will be less accurate than half precision. When
2y (z = x + iy) is so large that sin 2y cannot be evaluated accurately to even zero precision, the
following situation results. If |x| < 3/2, then TANH cannot be evaluated accurately to better than
one significant figure. If 3/2 � |y| < �1/2 ln (�/2), then TANH can be evaluated by ignoring the
imaginary part of the argument; however, the answer will be less accurate than half precision.
Here, � = AMACH(4) is the machine precision.

ASINH
This function evaluates the arc hyperbolic sine.

Function Return Value
ASINH � Function value. (Output)

Required Arguments
X � Argument for which the arc hyperbolic sine is desired. (Input)

FORTRAN 90 Interface
Generic: ASINH (X)

Specific: The specific interface names are ASINH, DASINH, CASINH, and ZASINH.

FORTRAN 77 Interface
Single: ASINH (X)

Double: The double precision function name is DASINH.

Complex: The complex name is CASINH.

Double Complex: The double complex name is ZASINH

Example
In this example, sinh��(2.0) is computed and printed.

 USE ASINH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 25

 X = 2.0
 VALUE = ASINH(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ASINH(�, F6.3, �) = �, F6.3)
 END

Output
ASINH(2.000) = 1.444

Description
The function ASINH(X) computes the inverse hyperbolic sine of x, sinh��x.

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow
occur, where b = AMACH(2) is the largest floating point number. This error is not detected by
ASINH.

Additional Example
In this example, sinh��(�1 + i) is computed and printed.

 USE ASINH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (-1.0, 1.0)
 VALUE = ASINH(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ASINH((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
ASINH((-1.000, 1.000)) = (-1.061, 0.666)

ACOSH
This function evaluates the arc hyperbolic cosine.

Function Return Value
ACOSH � Function value. (Output)

Required Arguments
X � Argument for which the arc hyperbolic cosine is desired. (Input)

26 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 90 Interface
Generic: ACOSH (X)

Specific: The specific interface names are ACOSH, DACOSH, CACOSH, and ZACOSH.

FORTRAN 77 Interface
Single: ACOSH (X)

Double: The double precision function name is DACOSH.

Complex: The complex name is CACOSH.

Double Complex: The double complex name is ZACOSH.

Example
In this example, cosh��(1.4) is computed and printed.

 USE ACOSH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.4
 VALUE = ACOSH(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ACOSH(�, F6.3, �) = �, F6.3)
 END

Output
ACOSH(1.400) = 0.867

Comments
The result of ACOSH(X) is returned on the positive branch. Recall that, like SQRT(X), ACOSH(X)
has multiple values.

Description
The function ACOSH(X) computes the inverse hyperbolic cosine of x, cosh��x.

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow
occur, where b = AMACH(2) is the largest floating point number. This error is not detected by
ACOSH.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 27

Additional Example
In this example, cosh��(1 � i) is computed and printed.

 USE ACOSH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.0, -1.0)
 VALUE = ACOSH(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ACOSH((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
ACOSH((1.000,-1.000)) = (-1.061, 0.905)

ATANH
This function evaluates the arc hyperbolic tangent.

Function Return Value
ATANH � Function value. (Output)

Required Arguments
X � Argument for which the arc hyperbolic tangent is desired. (Input)

FORTRAN 90 Interface
Generic: ATANH (X)

Specific: The specific interface names are ATANH, DATANH, CATANH, and ZATANH

FORTRAN 77 Interface
Single: ATANH (X)

Double: The double precision function name is DATANH.

Complex: The complex name is CATANH.

Double Complex: The double complex name is ZATANH.

28 � Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Example
In this example, tanh��(�1/4) is computed and printed.

 USE ATANH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = -0.25
 VALUE = ATANH(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ATANH(�, F6.3, �) = �, F6.3)
 END

Output
ATANH(-0.250) = -0.255

Comments
Informational error
Type Code

 3 2 Result of ATANH(X) is accurate to less than one-half precision because the
 absolute value of the argument is too close to 1.0.

Description
ATANH(X) computes the inverse hyperbolic tangent of x, tanh��x. The argument x must satisfy

1x �� �

where � = AMACH(4) is the machine precision. Note that |x| must not be so close to one that the
result is less accurate than half precision.

Additional Example
In this example, tanh��(1/2 + i/2) is computed and printed.

 USE ATANH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.5, 0.5)
 VALUE = ATANH(Z)

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions � 29

! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ATANH((�, F6.3, �,�, F6.3, �)) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output

 ATANH((0.500, 0.500)) = (0.402, 0.554)

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 31

Chapter 3: Exponential Integrals
and Related Functions

Routines
Evaluates the exponential integral, Ei(x)EI 32
Evaluates the exponential integral, E�(x).....................................E1 33
Evaluates the scaled exponential integrals, integer order,
En(x) ..ENE 35
Evaluates the logarithmic integral, li(x)ALI 36
Evaluates the sine integral, Si(x) ..SI 38
Evaluates the cosine integral, Ci(x) ... CI 39
Evaluates the cosine integral (alternate definition)....................CIN 40
Evaluates the hyperbolic sine integral, Shi(x)............................SHI 42
Evaluates the hyperbolic cosine integral, Chi(x)........................CHI 43
Evaluates the hyperbolic cosine integral (alternate definition)CINH 44

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a plot of the exponential integral functions that can be computed by the routines
described in this chapter.

32 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Figure 3-1 Plot of exE(x), E�(x) and Ei(x)

EI
This function evaluates the exponential integral for arguments greater than zero and the Cauchy
principal value for arguments less than zero.

Function Return Value
EI � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: EI (X)

Specific: The specific interface names are S_EI and D_EI.

FORTRAN 77 Interface
Single: EI (X)

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 33

Double: The double precision function name is DEI.

Example
In this example, Ei(1.15) is computed and printed.

 USE EI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.15
 VALUE = EI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� EI(�, F6.3, �) = �, F6.3)
 END

Output
EI(1.150) = 2.304

Comments
If principal values are used everywhere, then for all X, EI(X) = �E1(�X) and E1(X) = �EI(�X)

Description
The exponential integral, Ei(x), is defined to be

Ei() / for 0t

x
x e t dt x

�
�

�

� � ��

The argument x must be large enough to insure that the asymptotic formula ex/x does not
underflow, and x must not be so large that ex overflows.

E1
This function evaluates the exponential integral for arguments greater than zero and the Cauchy
principal value of the integral for arguments less than zero.

Function Return Value
E1 � Function value. (Output)

Required Arguments
X � Argument for which the integral is to be evaluated. (Input)

34 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 90 Interface
Generic: E1 (X)

Specific: The specific interface names are S_E1 and D_E1.

FORTRAN 77 Interface
Single: E1 (X)

Double: The double precision function name is DE1.

Example
In this example, E�(1.3) is computed and printed.

 USE E1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.3
 VALUE = E1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� E1(�, F6.3, �) = �, F6.3)
 END

Output
E1(1.300) = 0.135

Comments
 Informational error

 Type Code

 2 1 The function underflows because X is too large.

Description
The alternate definition of the exponential integral, E�(x), is

1() / for 0t

x
E x e t dt x

�
�

� ��

The path of integration must exclude the origin and not cross the negative real axis.

The argument x must be large enough that e�x does not overflow, and x must be small enough to
insure that e�x/x does not underflow.

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 35

ENE
Evaluates the exponential integral of integer order for arguments greater than zero scaled by
EXP(X).

Required Arguments
X � Argument for which the integral is to be evaluated. (Input)

It must be greater than zero.

N � Integer specifying the maximum order for which the exponential integral is to be
calculated. (Input)

F � Vector of length N containing the computed exponential integrals scaled by EXP(X).
(Output)

FORTRAN 90 Interface
Generic: CALL ENE (X, N, F)

Specific: The specific interface names are S_ENE and D_ENE.

FORTRAN 77 Interface
Single: CALL ENE (X, N, F)

Double: The double precision function name is DENE.

Example
In this example, En(10) for n = 1, ..., n is computed and printed.

 USE ENE_INT
 USE UMACH_INT

! Declare variables
 INTEGER N
 PARAMETER (N=10)
!
 INTEGER K, NOUT
 REAL F(N), X
! Compute
 X = 10.0
 CALL ENE (X, N, F)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K, X, F(K)
 10 CONTINUE
99999 FORMAT (� E sub �, I2, � (�, F6.3, �) = �, F6.3)
 END

36 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Output
E sub 1 (10.000) = 0.092
E sub 2 (10.000) = 0.084
E sub 3 (10.000) = 0.078
E sub 4 (10.000) = 0.073
E sub 5 (10.000) = 0.068
E sub 6 (10.000) = 0.064
E sub 7 (10.000) = 0.060
E sub 8 (10.000) = 0.057
E sub 9 (10.000) = 0.054
E sub 10 (10.000) = 0.051

Description
The scaled exponential integral of order n, En(x), is defined to be

1
() for 0x xt n

nE x e e t dt x
�

� �

� ��

The argument x must satisfy x > 0. The integer n must also be greater than zero. This code is
based on a code due to Gautschi (1974).

ALI
This function evaluates the logarithmic integral.

Function Return Value
ALI � Function value. (Output)

Required Arguments
X � Argument for which the logarithmic integral is desired. (Input)

It must be greater than zero and not equal to one.

FORTRAN 90 Interface
Generic: ALI (X)

Specific: The specific interface names are S_ALI and D_ALI.

FORTRAN 77 Interface
Single: ALI (X)

Double: The double precision function name is DALI.

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 37

Example
In this example, li(2.3) is computed and printed.

 USE ALI_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 2.3
 VALUE = ALI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ALI(�, F6.3, �) = �, F6.3)
 END

Output
ALI(2.300) = 1.439

Comments
 Informational error

 Type Code

 3 2 Result of ALI(X) is accurate to less than one-half precision
because X is too close to 1.0.

Description
The logarithmic integral, li(x), is defined to be

0
li() for 0 and 1

ln
x dtx x x

t
� � � ��

The argument x must be greater than zero and not equal to one. To avoid an undue loss of
accuracy, x must be different from one at least by the square root of the machine precision.

The function li(x) approximates the function �(x), the number of primes less than or equal to x.
Assuming the Riemann hypothesis (all non-real zeros of �(z) are on the line
z = 1/2), then

li() () (ln)x x O x x� � �

38 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Figure 3-2 Plot of li(x) and �(x)

SI
This function evaluates the sine integral.

Function Return Value
SI � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: SI (X)

Specific: The specific interface names are S_SI and D_SI.

FORTRAN 77 Interface
Single: SI (X)

Double: The double precision function name is DSI.

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 39

Example
In this example, Si(1.25) is computed and printed.

 USE SI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.25
 VALUE = SI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� SI(�, F6.3, �) = �, F6.3)
 END

Output
SI(1.250) = 1.146

Description
The sine integral, Si(x), is defined to be

0
sinSi()=

x tx dt
t�

If

1/x ��

the answer is less accurate than half precision, while for |x| > 1 /�, the answer has no precision.
Here, � = AMACH(4) is the machine precision.

CI
This function evaluates the cosine integral.

Function Return Value
CI � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be greater than zero.

40 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 90 Interface
Generic: CI (X)

Specific: The specific interface names are S_CI and D_CI.

FORTRAN 77 Interface
Single: CI (X)

Double: The double precision function name is DCI.

Example
In this example, Ci(1.5) is computed and printed.

 USE CI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.5
 VALUE = CI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� CI(�, F6.3, �) = �, F6.3)
 END

Output
CI(1.500) = 0.470

Description
The cosine integral, Ci(x), is defined to be

0

1 cosCi() ln
x

t
tx x d

t
�

�

� � � �

where � 0.57721566 is Euler�s constant.

The argument x must be larger than zero. If

1/x ��

then the result will be less accurate than half precision. If x > 1/�, the result will have no
precision. Here, � = AMACH(4) is the machine precision.

CIN
This function evaluates a function closely related to the cosine integral.

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 41

Function Return Value
CIN � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CIN (X)

Specific: The specific interface names are S_CIN and D_CIN.

FORTRAN 77 Interface
Single: CIN (X)

Double: The double precision function name is DCIN.

Example
In this example, Cin(2�) is computed and printed.

 USE CIN_INT
 USE UMACH_INT
 USE CONST_INT
! Declare variables
!
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = CONST(�pi�)
 X = 2.0* X
 VALUE = CIN(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� CIN(�, F6.3, �) = �, F6.3)
 END

Output
CIN(6.283) = 2.438

Comments
Informational error
Type Code

 2 1 The function underflows because X is too small.

42 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Description
The alternate definition of the cosine integral, Cin(x), is

0

1 cosCin()
x tx dt

t
�

� �

For

0 x s� �

where s = AMACH(1) is the smallest representable positive number, the result underflows. For

1/x ��

the answer is less accurate than half precision, while for |x| > 1 /�, the answer has no precision.
Here, � = AMACH(4) is the machine precision.

SHI
This function evaluates the hyperbolic sine integral.

Function Return Value
SHI� function value. (Output)

SHI equals

0
sinh() /

x
t t dt�

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: SHI (X)

Specific: The specific interface names are S_SHI and D_SHI.

FORTRAN 77 Interface
Single: SHI (X)

Double: The double precision function name is DSHI.

Example
In this example, Shi(3.5) is computed and printed.

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 43

 USE SHI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 3.5
 VALUE = SHI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� SHI(�, F6.3, �) = �, F6.3)
 END

Output
SHI(3.500) = 6.966

Description
The hyperbolic sine integral, Shi(x), is defined to be

0

sinhShi()
x tx dt

t
� �

The argument x must be large enough that e�x/x does not underflow, and x must be small enough
that ex does not overflow.

CHI
This function evaluates the hyperbolic cosine integral.

Function Return Value
CHI � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CHI (X)

Specific: The specific interface names are S_CHI and D_CHI.

FORTRAN 77 Interface
Single: CHI (X)

44 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Double: The double precision function name is DCHI.

Example
In this example, Chi(2.5) is computed and printed.

 USE CHI_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 2.5
 VALUE = CHI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� CHI(�, F6.3, �) = �, F6.3)
 END

Output
CHI(2.500) = 3.524

Comments
When X is negative, the principal value is used.

Description
The hyperbolic cosine integral, Chi(x), is defined to be

0

cosh 1Chi() ln for 0
x tx x dt x

t
�

�

� � � ��

where � 0.57721566 is Euler�s constant.

The argument x must be large enough that e�x/x does not underflow, and x must be small enough
that ex does not overflow.

CINH
This function evaluates a function closely related to the hyperbolic cosine integral.

Function Return Value
CINH � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions � 45

FORTRAN 90 Interface
Generic: CINH (X)

Specific: The specific interface names are S_CINH and D_CINH.

FORTRAN 77 Interface
Single: CINH (X)

Double: The double precision function name is DCINH.

Example
In this example, Cinh(2.5) is computed and printed.

 USE CINH_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 2.5
 VALUE = CINH(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� CINH(�, F6.3, �) = �, F6.3)
 END

Output

 CINH(2.500) = 2.031

Comments
Informational error
Type Code

 2 1 The function underflows because X is too small.

Description
The alternate definition of the hyperbolic cosine integral, Cinh(x), is

0

cosh 1Cinh()
x tx dt

t
�

� �

For

0 2x s� �

46 � Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

where s = AMACH(1) is the smallest representable positive number, the result underflows. The
argument x must be large enough that e�x/x does not underflow, and x must be small enough that
ex does not overflow.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 47

Chapter 4: Gamma Function and
Related Functions

Routines
4.1 Factorial Function

Evaluates the factorial, n� ...FAC 48

Evaluates the binomial coefficient, n
m

� �
� �
� �
� �

................................ BINOM 50

4.2 Gamma Function
Evaluates the real or complex gamma function, �(x) GAMMA 51
Evaluates the reciprocal of the real or complex gamma
function, 1/�(x) .. GAMR 54
Evaluates the real or complex function, ln ��(x)�................ALNGAM 55
Evaluates the log abs gamma function and its signALGAMS 57

4.3. Incomplete Gamma Function
Evaluates the incomplete gamma function, �(a,x)GAMI 59
Evaluates the complementary incomplete gamma function,
�(a,x).. GAMIC 61
Evaluates Tricomi�s incomplete gamma function, �*(a, x)GAMIT 63

4.4. Psi Function
Evaluates the real or complex psi function, �(x) PSI 64

4.5. Pochhammer�s Function
Evaluates Pochhammer�s generalized symbol, (a)xPOCH 66
Evaluates Pochhammer�s symbol starting
from the first order ...POCH1 67

4.6. Beta Function
Evaluates the real or complex beta function, �(a,b)BETA 69
Evaluates the log of the real or complex beta function,
ln �(a,b).. ALBETA 71
Evaluates the incomplete beta function, Ix(a,b)BETAI 73

48 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a table of the functions defined in this chapter:

FAC n! = �(n + 1)
BINOM n!/m!(n � m)!, 0 � m � n
GAMMA � � 1

0 , 0, 1, 2,t xx e t dt x� � �� � � � �� �

GAMR 1/�(x)
ALNGAM ln ��(x)�, x � 0, �1, �2, �
ALGAMS ln ��(x)� and sign �(x), x � 0, �1, �2, �
GAMI � � 1

0, , 0, 0x a ta x t e dt a x�
� �� � ��

GAMIC � � 1, , 0a t
xa x t e dt x� � �� � ��

GAMIT �*(a, x) = (x�a/�(a))�(a, x), x � 0
PSI �(x) = ��(x)/�(x), x � 0, �1, �2, �
POCH (a)x = �(a + x)/�(a), if a + x = 0, �1, �2, �
 then a must = 0, �1, �2, �
POCH1 ((a)x � 1)/x, if a + x = 0, �1, �2, � then a must = 0, �1, �2, �
BETA �(x�, x�) = �(x�)�(x�)/�(x� + x�), x� > 0 and x� > 0
CBETA �(z�, z�) = �(z�)�(z�)/�(z� + z�), z� > 0 and z� > 0
ALBETA ln �(a, b), a > 0, b > 0
BETAI Ix(a, b) = �x(a, b)/�(a, b), 0 � x � 1, a > 0, b > 0

FAC
This function evaluates the factorial of the argument.

Function Return Value
FAC � Function value. (Output)

See Comment 1.

Required Arguments
N � Argument for which the factorial is desired. (Input)

FORTRAN 90 Interface
Generic: FAC (N)

Specific: The specific interface names are S_FAC and D_FAC.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 49

FORTRAN 77 Interface
Single: FAC (N)

Double: The double precision function name is DFAC.

Example
In this example, 6! is computed and printed.

 USE FAC_INT
 USE UMACH_INT
! Declare variables
 INTEGER N, NOUT
 REAL VALUE
! Compute
 N = 6
 VALUE = FAC(N)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) N, VALUE
99999 FORMAT (� FAC(�, I1, �) = �, F6.2)
 END

Output
FAC(6) = 720.00

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = FAC(6)
Y = SQRT(X)

must be used rather than

Y = SQRT(FAC(6)).

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

To evaluate the factorial for nonintegral values of the argument, the gamma function should be
used. For large values of the argument, the log gamma function should be used.

Description
The factorial is computed using the relation n! = �(n + 1). The function �(x) is defined in GAMMA
on page 51. The argument n must be greater than or equal to zero, and it must not be so large
that n! overflows. Approximately, n! overflows when nne�n overflows.

50 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

BINOM
This function evaluates the binomial coefficient.

Function Return Value
BINOM � Function value. (Output)

See Comment 1.

Required Arguments
N � First parameter of the binomial coefficient. (Input)

N must be nonnegative.

M � Second parameter of the binomial coefficient. (Input)
M must be nonnegative and less than or equal to N.

FORTRAN 90 Interface
Generic: BINOM (N, M)

Specific: The specific interface names are S_BINOM and D_BINOM.

FORTRAN 77 Interface
Single: BINOM (N, M)

Double: The double precision function name is DBINOM.

Example

In this example,
9
5
� �
� �
� �

 is computed and printed.

 USE BINOM_INT
 USE UMACH_INT
! Declare variables
 INTEGER M, N, NOUT
 REAL VALUE
! Compute
 N = 9
 M = 5
 VALUE = BINOM(N, M)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) N, M, VALUE
99999 FORMAT (� BINOM(�, I1, �,�, I1, �) = �, F6.2)
 END

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 51

Output
BINOM(9,5) = 126.00

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = BINOM(9, 5)
Y = SQRT(X)

must be used rather than

Y = SQRT(BINOM(9, 5)).

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

2. To evaluate binomial coefficients for nonintegral values of the arguments, the complete
beta function or log beta function should be used.

Description
The binomial function is defined to be

!
!()!

n n
m m n m

� �
�� �

�� �

with n � m � 0. Also, n must not be so large that the function overflows.

GAMMA
This function evaluates the complete gamma function.

Function Return Value
GAMMA � Function value. (Output)

Required Arguments
X � Argument for which the complete gamma function is desired. (Input)

FORTRAN 90 Interface
Generic: GAMMA (X)

Specific: The specific interface names are S_GAMMA, D_GAMMA, and C_GAMMA.

52 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Single: GAMMA (X)

Double: The double precision function name is DGAMMA.

Complex: The complex name is CGAMMA.

Example
In this example, �(5.0) is computed and printed.

 USE GAMMA_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 5.0
 VALUE = GAMMA(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� GAMMA(�, F6.3, �) = �, F6.3)
 END

Output
GAMMA(5.000) = 24.000

Comments
Informational errors
 Type Code

 2 1 The function underflows because X is too small.

 3 2 Result is accurate to less than one-half precision because X is too near a
 negative integer.

Description
The gamma function, �(z), is defined to be

� � 1

0
 for 0z tz t e dt z

�
� �

� � � ��

For
(z) < 0, the above definition is extended by analytic continuation.

z must not be so close to a negative integer that the result is less accurate than half precision. If

(z) is too small, then the result will underflow. Users who need such values should use the log
gamma function ALNGAM, page 55. When �(z) 0,
(z) should be greater than x� so that the

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 53

result does not underflow, and
(z) should be less than x� so that the result does not
overflow. x� and x� are available by

CALL R9GAML (XMIN, XMAX)

Note that z must not be too far from the real axis because the result will underflow.

Figure 4-1 Plot of �(x) and 1/�(x)

Additional Example
In this example, �(1.4 + 3i) is computed and printed.

 USE GAMMA_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.4, 3.0)
 VALUE = GAMMA(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� GAMMA(�, F6.3, �,�, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
GAMMA(1.400, 3.000) = (-0.001, 0.061)

54 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

GAMR
This function evaluates the reciprocal gamma function.

Function Return Value
GAMR � Function value. (Output)

Required Arguments
X � Argument for which the reciprocal gamma function is desired. (Input)

FORTRAN 90 Interface
Generic: GAMR (X)

Specific: The specific interface names are S_GAMR, D_GAMR, and C_GAMR

FORTRAN 77 Interface
Single: GAMR (X)

Double: The double precision function name is DGAMR.

Complex: The complex name is CGAMR.

Example
In this example, 1/�(1.85) is computed and printed.

 USE GAMR_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.85
 VALUE = GAMR(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� GAMR(�, F6.3, �) = �, F6.3)
 END

Output
GAMR(1.850) = 1.058

Comments
This function is well behaved near zero and negative integers.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 55

Description
The function GAMR computes 1/�(z). See GAMMA (page 51) for the definition of �(z).

For �(z) 0, z must be larger than x� so that 1/�(z) does not underflow, and x must be smaller
than x� so that 1/��z) does not overflow. Symmetric overflow and underflow limits x� and
x� are obtainable from

CALL R9GAML (XMIN, XMAX)

Note that z must not be too far from the real axis because the result will overflow there.

Additional Example
In this example, ln ��1.4 + 3i) is computed and printed.

 USE GAMR_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.4, 3.0)
 VALUE = GAMR(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� GAMR(�, F6.3, �,�, F6.3, �) = (�, F7.3, �,�, F7.3, �)�)
 END

Output
GAMR(1.400, 3.000) = (-0.303,-16.367)

ALNGAM
The function evaluates the logarithm of the absolute value of the gamma function.

Function Return Value
ALNGAM � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ALNGAM (X)

Specific: The specific interface names are S_ALNGAM, D_ALNGAM, and C_ALNGAM.

56 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Single: ALNGAM (X)

Double: The double precision function name is DLNGAM.

Complex: The complex name is CLNGAM.

Example
In this example, ln ���1.85)� is computed and printed.

 USE ALNGAM_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.85
 VALUE = ALNGAM(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ALNGAM(�, F6.3, �) = �, F6.3)
 END

Output
ALNGAM(1.850) = -0.056

Comments
Informational error
Type Code

 3 2 Result of ALNGAM(X) is accurate to less than one-half precision because X is
 too near a negative integer.

Description
The function ALNGAM computes ln ���x)�. See GAMMA (page 51) for the definition of ��x).

The gamma function is not defined for integers less than or equal to zero. Also, |x| must not be
so large that the result overflows. Neither should x be so close to a negative integer that the
accuracy is worse than half precision.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 57

Figure 4-2 Plot of log���x)�

Additional Example
In this example, ln ��1.4 + 3i) is computed and printed.

 USE ALNGAM_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (1.4, 3.0)
 VALUE = ALNGAM(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� ALNGAM(�, F6.3, �,�, F6.3, �) = (�,&
 F6.3, �,�, F6.3, �)�)
 END

Output
ALNGAM(1.400, 3.000) = (-2.795, 1.589)

ALGAMS
Returns the logarithm of the absolute value of the gamma function and the sign of gamma.

58 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Required Arguments
X � Argument for which the logarithm of the absolute value of the gamma function is

desired. (Input)

ALGM � Result of the calculation. (Output)

S � Sign of gamma(X). (Output)
If gamma(X) is greater than or equal to zero, S = 1.0. If gamma(X) is less than zero,
S = �1.0.

FORTRAN 90 Interface
Generic: CALL ALGAMS (X, ALGM, S)

Specific: The specific interface names are S_ALGAMS and D_ALGAMS.

FORTRAN 77 Interface
Single: CALL ALGAMS (X, ALGM, S)

Double: The double precision function name is DLGAMS.

Example
In this example, ln ���1.85)� and the sign of ��1.85) are computed and printed.

 USE ALGAMS_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, S, X
! Compute
 X = 1.85
 CALL ALGAMS(X, VALUE, S)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998) X, VALUE
99998 FORMAT (� Log Abs(Gamma(�, F6.3, �)) = �, F6.3)
 WRITE (NOUT,99999) X, S
99999 FORMAT (� Sign(Gamma(�, F6.3, �)) = �, F6.2)
 END

Output
Log Abs(Gamma(1.850)) = -0.056
Sign(Gamma(1.850)) = 1.00

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 59

Comments
Informational error
Type Code

 3 2 Result of ALGAMS is accurate to less than one-half precision because X is too
 near a negative integer.

Description
The function ALGAMS computes ln ���x)� and the sign of ��x). See GAMMA (page 51) for the
definition of ��x).

The result overflows if |x| is too large. The accuracy is worse than half precision if x is too close
to a negative integer.

GAMI
This funciton evaluates the incomplete gamma function.

Function Return Value
GAMI � Function value. (Output)

Required Arguments
A � The integrand exponent parameter. (Input)

It must be positive.

X � The upper limit of the integral definition of GAMI. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: GAMI(A, X)

Specific: The specific interface names are S_GAMI and D_GAMI.

FORTRAN 77 Interface
Single: GAMI(A, X)

Double: The double precision function name is DGAMI.

Example
In this example, �(2.5, 0.9) is computed and printed.

60 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

 USE GAMI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
! Compute
 A = 2.5
 X = 0.9
 VALUE = GAMI(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� GAMI(�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output
GAMI(2.500, 0.900) = 0.1647

Description
The incomplete gamma function is defined to be

� � 1

0
, for 0 and 0

x a ta x t e dt a x�
� �

� � ��

The function �(a, x) is defined only for a greater than zero. Although �(a, x) is well defined for
x > ��, this algorithm does not calculate �(a, x) for negative x. For large a and sufficiently large
x, �(a, x) may overflow. �(a, x) is bounded by ��a), and users may find this bound a useful guide
in determining legal values of a.

Because logarithmic variables are used, a slight deterioration of two or three digits of accuracy
will occur when GAMI is very large or very small.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 61

Figure 4-3 Contour Plot of �(a, x)

GAMIC
Evaluates the complementary incomplete gamma function.

Function Return Value
GAMIC � Function value. (Output)

Required Arguments
A � The integrand exponent parameter as per the remarks. (Input)

X � The upper limit of the integral definition of GAMIC. (Input)
If A is positive, then X must be positive. Otherwise, X must be nonnegative.

FORTRAN 90 Interface
Generic: GAMIC(A, X)

Specific: The specific interface names are S_GAMIC and D_GAMIC.

62 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Single: GAMIC(A, X)

Double: The double precision function name is DGAMIC.

Example
In this example, ��2.5, 0.9) is computed and printed.

 USE GAMIC_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
! Compute
 A = 2.5
 X = 0.9
 VALUE = GAMIC(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� GAMIC(�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output
GAMIC(2.500, 0.900) = 1.1646

Comments
Informational error
Type Code

 3 2 Result of GAMIC(A, X) is accurate to less than one-half precision because A
 is too near a negative integer.

Description
The incomplete gamma function is defined to be

� � 1, a t

x
a x t e dt

�
� �

� � �

The only general restrictions on a are that it must be positive if x is zero; otherwise, it must not
be too close to a negative integer such that the accuracy of the result is less than half precision.
Furthermore, ��a, x) must not be so small that it underflows, or so large that it overflows.
Although ��a, x) is well defined for x > �� and a > 0, this algorithm does not calculate ��a, x)
for negative x.

The function GAMIC is based on a code by Gautschi (1979).

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 63

GAMIT
This function evaluates the Tricomi form of the incomplete gamma function.

Function Return Value
GAMIT � Function value. (Output)

Required Arguments
A � The integrand exponent parameter as per the comments. (Input)

X � The upper limit of the integral definition of GAMIT. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: GAMIT(A, X)

Specific: The specific interface names are S_GAMIT and D_GAMIT.

FORTRAN 77 Interface
Single: GAMIT(A, X)

Double: The double precision function name is DGAMIT.

Example
In this example, ��(3.2, 2.1) is computed and printed.

 USE GAMIT_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
! Compute
 A = 3.2
 X = 2.1
 VALUE = GAMIT(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� GAMIT(�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output
GAMIT(3.200, 2.100) = 0.0284

64 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Comments
Informational error
Type Code

 3 2 Result of GAMIT(A, X) is accurate to less than one-half precision because A
 is too close to a negative integer.

Description
The Tricomi�s incomplete gamma function is defined to be

1(,)*(,)
() ()

a a
a t

x

x a x xa x t e dt
a a

�
�

� �

�
� �

� �
� �

�

where �(a, x) is the incomplete gamma function. See GAMI (page 59) for the definition of �(a, x).

The only general restriction on a is that it must not be too close to a negative integer such that
the accuracy of the result is less than half precision. Furthermore, ���(a, x)� must not underflow
or overflow. Although ��(a, x) is well defined for x > ��, this algorithm does not calculate � *
(a, x) for negative x.

A slight deterioration of two or three digits of accuracy will occur when GAMIT is very large or
very small in absolute value because logarithmic variables are used. Also, if the parameter a is
very close to a negative integer (but not quite a negative integer), there is a loss of accuracy
which is reported if the result is less than half machine precision.

The function GAMIT is based on a code by Gautschi (1979).

PSI
This function evaluates the logarithmic derivative of the gamma function.

Function Return Value
PSI � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: PSI (X)

Specific: The specific interface names are S_PSI, D_PSI, and C_PSI.

FORTRAN 77 Interface
Single: PSI (X)

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 65

Double: The double precision function name is DPSI.

Complex: The complex name is CPSI.

Example
In this example, �(1.915) is computed and printed.

 USE PSI_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.915
 VALUE = PSI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� PSI(�, F6.3, �) = �, F6.3)
 END

Output
PSI(1.915) = 0.366

Comments
Informational error
Type Code

 3 2 Result of PSI(X) is accurate to less than one-half precision because X is too
 near a negative integer.

Description
The psi function, also called the digamma function, is defined to be

()() ln ()
()

d xx x
dx x

�
��

� � �
�

See GAMMA (page 51) for the definition of ��x).

The argument x must not be exactly zero or a negative integer, or �(x) is undefined. Also, x
must not be too close to a negative integer such that the accuracy of the result is less than half
precision.

Additional Example
In this example, �(1.9 + 4.3i) is computed and printed.

 USE PSI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT

66 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

 COMPLEX VALUE, Z
! Compute
 Z = (1.9, 4.3)
 VALUE = PSI(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� PSI(�, F6.3, �,�, F6.3, �) = (�, F6.3, �,�, F6.3, �)�)
 END

Output
PSI(1.900, 4.300) = (1.507, 1.255)

POCH
This function evaluates a generalization of Pochhammer�s symbol.

Function Return Value
POCH � Function value. (Output)

The generalized Pochhammer symbol is ��a + x)/��a).

Required Arguments
A � The first argument. (Input)

X � The second, differential argument. (Input)

FORTRAN 90 Interface
Generic: POCH (A, X)

Specific: The specific interface names are S_POCH and D_POCH.

FORTRAN 77 Interface
Single: POCH (A, X)

Double: The double precision function name is DPOCH.

Example
In this example, (1.6)��� is computed and printed.

 USE POCH_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
 ! Compute

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 67

 A = 1.6
 X = 0.8
 VALUE = POCH(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� POCH(�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output
POCH(1.600, 0.800) = 1.3902

Comments
1. Informational errors

Type Code

 3 2 Result of POCH(A, X) is accurate to less than one-half precision because the
 absolute value of the X is too large. Therefore, A + X cannot be evaluated
 accurately.

 3 2 Result of POCH(A, X) is accurate to less than one-half precision because
 either A or A + X is too close to a negative integer.

2. For X a nonnegative integer, POCH(A, X) is just Pochhammer�s symbol.

Description
Pochhammer�s symbol is (a)n = (a)(a � 1)�(a � n + 1) for n a nonnegative integer.
Pochhammer�s generalized symbol is defined to be

()()
()x

a xa
a

� �
�

�

See GAMMA (page 51) for the definition of ��x).

Note that a straightforward evaluation of Pochhammer�s generalized symbol with either gamma
or log gamma functions can be especially unreliable when a is large or x is small.

Substantial loss can occur if a + x or a are close to a negative integer unless |x| is sufficiently
small. To insure that the result does not overflow or underflow, one can keep the arguments a
and a + x well within the range dictated by the gamma function routine GAMMA or one can keep
|x| small whenever a is large. POCH also works for a variety of arguments outside these rough
limits, but any more general limits that are also useful are difficult to specify.

POCH1
This function evaluates a generalization of Pochhammer�s symbol starting from the first order.

68 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Function Return Value
POCH1 � Function value. (Output)

POCH1(A, X) = (POCH(A, X) � 1)/X.

Required Arguments
A � The first argument. (Input)

X � The second, differential argument. (Input)

FORTRAN 90 Interface
Generic: POCH1 (A, X)

Specific: The specific interface names are S_POCH1 and D_POCH1.

FORTRAN 77 Interface
Single: POCH1 (A, X)

Double: The double precision function name is DPOCH1.

Example
In this example, POCH1(1.6, 0.8) is computed and printed.

 USE POCH1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
! Compute
 A = 1.6
 X = 0.8
 VALUE = POCH1(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� POCH1(�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output
POCH1(1.600, 0.800) = 0.4878

Description
Pochhammer�s symbol from the first order is defined to be

� �
() 1 (), /

() 1
xa a xa x x
x a
� � �

� �
� �

POCH1

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 69

where (a)x is Pochhammer�s generalized symbol. See POCH (page 66) for the definition of (a)x.
It is useful in special situations that require especially accurate values when x is small. This
specification is particularly suited for stability when computing expressions such as

� � � �
() () / , ,

() ()
a x b x x a x b x

a b
� �� � � �

� � �� �� �	

POCH1 POCH1

Note that POCH1(a, 0) = �(a). See PSI (page 64) for the definition of �(a).

When |x| is so small that substantial cancellation will occur if the straightforward formula is
used, we use an expansion due to fields and discussed by Luke (1969).

The ratio (a)x = ��a + x)/��a) is written by Luke as (a + (x � 1)/2)x times a polynomial in
(a + (x � 1)/2)��. To maintain significance in POCH1, we write for positive a.

(a + (x � 1)/2)x = exp(x ln(a + (x � 1)/2)) = eq = 1 + qEXPRL(q)

where EXPRL = (ex � 1)/x. Likewise, the polynomial is written P = 1 + xP�(a, x). Thus,

POCH1 (a, x) = ((a)x � 1)/x = EXPRL(q)(q/x + qP�(a, x)) + P�(a, x)

Substantial significance loss can occur if a + x or a are close to a negative integer even when �x�
is very small. To insure that the result does not overflow or underflow, one can keep the
arguments a and a + x well within the range dictated by the gamma function routine GAMMA
(page 51) or one can keep �x� small whenever a is large. POCH also works for a variety of
arguments outside these rough limits, but any more general limits that are also useful are
difficult to specify.

BETA
This function evaluates the complete beta function.

Function Return Value
BETA � Function value. (Output)

Required Arguments
A � First beta parameter. (Input)

For real arguments, A must be positive.

B � Second beta parameter. (Input)
For real arguments, B must be positive.

FORTRAN 90 Interface
Generic: BETA(A, B)

Specific: The specific interface names are S_BETA, D_BETA, and C_BETA.

70 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Single: BETA(A, B)

Double: The double precision function name is DBETA.

Complex: The complex name is CBETA.

Example
In this example, �(2.2, 3.7) is computed and printed.

 USE BETA_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
! Compute
 A = 2.2
 X = 3.7
 VALUE = BETA(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� BETA(�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output
BETA(2.200, 3.700) = 0.0454

Comments
Informational error
Type Code

 2 1 The function underflows because A and/or B is too large.

Description
The beta function is defined to be

1 1 1

0

() ()(,) (1)
()

a ba ba b t t dt
a b

�
� �

� �
� � �

� �
�

See GAMMA (page 51) for the definition of ��x).

For real arguments the function BETA requires that both arguments be positive. In addition, the
arguments must not be so large that the result underflows.

For complex arguments, the arguments a and a + b must not be close to negative integers. The
arguments should not be so large (near the real axis) that the result underflows. Also, a + b
should not be so far from the real axis that the result overflows.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 71

Additional Example
In this example, �(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.

 USE BETA_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX A, B, VALUE
! Compute
 A = (1.7, 2.2)
 B = (3.7, 0.4)
 VALUE = BETA(A, B)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (� BETA((�, F6.3, �,�, F6.3, �), (�, F6.3, �,�, F6.3,&
 �)) = (�, F6.3, �,�, F6.3, �)�)
 END

Output
BETA((1.700, 2.200), (3.700, 0.400)) = (-0.033,-0.017)

ALBETA
This function evaluates the natural logarithm of the complete beta function for positive arguments.

Function Return Value
ALBETA � Function value. (Output)

ALBETA returns ln �(A, B) = ln(��A)��B))/��A + B).

Required Arguments
A � The first argument of the BETA function. (Input)

For real arguments, A must be greater than zero.

B � The second argument of the BETA function. (Input)
For real arguments, B must be greater than zero.

FORTRAN 90 Interface
Generic: ALBETA (A, B)

Specific: The specific interface names are S_ALBETA, D_ALBETA, and C_ALBETA.

FORTRAN 77 Interface
Single: ALBETA (A, B)

72 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Double: The double precision function name is DLBETA.

Complex: The complex name is CLBETA.

Example
In this example, ln �(2.2, 3.7) is computed and printed.

 USE ALBETA_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL A, VALUE, X
! Compute
 A = 2.2
 X = 3.7
 VALUE = ALBETA(A, X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (� ALBETA(�, F6.3, �,�, F6.3, �) = �, F8.4)
 END

Output
ALBETA(2.200, 3.700) = -3.0928

Comments
Note that ln �(A, B) = ln �(B, A).

Description
ALBETA computes ln �(a, b) = ln �(b, a). See BETA (page 69) for the definition of �(a, b).

For real arguments, the function ALBETA is defined for a > 0 and b > 0. It returns accurate
results even when a or b is very small. It can overflow for very large arguments; this error
condition is not detected except by the computer hardware.

For complex arguments, the arguments a, b and a + b must not be close to negative integers
(even though some combinations ought to be allowed). The arguments should not be so large
that the logarithm of the gamma function overflows (presumably an improbable condition).

Additional Example
In this example, ln �(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.

 USE ALBETA_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 COMPLEX A, B, VALUE
! Compute
 A = (1.7, 2.2)
 B = (3.7, 0.4)

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions � 73

 VALUE = ALBETA(A, B)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (� ALBETA((�, F6.3, �,�, F6.3, �), (�, F6.3, �,�, F6.3, &
 �)) = (�, F6.3, �,�, F6.3, �)�)
 END

Output
ALBETA((1.700, 2.200), (3.700, 0.400)) = (-3.280,-2.659)

BETAI
This function evaluates the incomplete beta function ratio.

Function Return Value
BETAI � Probability that a random variable from a beta distribution having parameters PIN

and QIN will be less than or equal to X. (Output)

Required Arguments
X � Upper limit of integration. (Input)

X must be in the interval (0.0, 1.0) inclusive.

PIN � First beta distribution parameter. (Input)
PIN must be positive.

QIN � Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface
Generic: BETAI(X, PIN, QIN)

Specific: The specific interface names are S_BETAI and D_BETAI.

FORTRAN 77 Interface
Single: BETAI(X, PIN, QIN)

Double: The double precision function name is DBETAI.

74 � Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Example
In this example, I����(2.2, 3.7) is computed and printed.

 USE BETAI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL PIN, QIN, VALUE, X
! Compute
 X = 0.61
 PIN = 2.2
 QIN = 3.7
 VALUE = BETAI(X, PIN, QIN)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, PIN, QIN, VALUE
99999 FORMAT (� BETAI(�, F6.3, �,�, F6.3, �,�, F6.3, �) = �, F6.4)
 END

Output

 BETAI(0.610, 2.200, 3.700) = 0.8822

Description
The incomplete beta function is defined to be

1 1

0

(,) 1(,) (1)
(,) (,)

for 0 1, 0, 0

x p qx
x

p q
I p q t t dt

p q p q
x p q

�

� �

� �

� � �

� � � �

�

See BETA (page 69) for the definition of �(p, q).

The parameters p and q must both be greater than zero. The argument x must lie in the range 0
to 1. The incomplete beta function can underflow for sufficiently small x and large p; however,
this underflow is not reported as an error. Instead, the value zero is returned as the function
value.

The function BETAI is based on the work of Bosten and Battiste (1974).

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 75

Chapter 5: Error Function and
Related Functions

Routines
5.1. Error Functions

Evaluates the error function, erf x...ERF 76
Evaluates the complementary error function, erfc x ERFC 77
Evaluates the scaled complementary error function,

 xe x
2
erfc ...ERFCE 79

Evaluates a scaled function related to erfc,
� � �

�

ze iz
2

erfc ..CERFE 80
Evaluates the inverse error function, erf�� x.............................ERFI 82
Evaluates the inverse complementary error function,
erfc�� x... ERFCI 83
Evaluates Dawson�s function.. DAWS 85

5.2. Fresnel Integrals
Evaluates the cosine Fresnel integral, C(x).........................FRESC 86
Evaluate the sine Fresnel integral, S(x)...............................FRESS 88

Usage Notes
The error function is

2

0

2erf ()
x tx e dt

�

�

� �

The complementary error function is erfc(x) = 1 � erf(x). Dawson�s function is

2 2

0

x
x te e dt� �

The Fresnel integrals are

2

0
() cos

2
x

C x t dt�� �
� � �

� �
�

76 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

and

2

0
() sin

2
x

S x t dt�� �
� � �

� �
�

They are related to the error function by

1() () erf (1)
2 2

iC z iS z i z�� ��
� � �� �� �

� 	

ERF
This function evaluates the error function.

Function Return Value
ERF � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERF (X)

Specific: The specific interface names are S_ERF and D_ERF.

FORTRAN 77 Interface
Single: ERF (X)

Double: The double precision function name is DERF.

Example
In this example, erf(1.0) is computed and printed.

 USE ERF_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.0
 VALUE = ERF(X)

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 77

! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ERF(�, F6.3, �) = �, F6.3)
 END

Output
ERF(1.000) = 0.843

Description
The error function, erf(x), is defined to be

2

0

2erf ()
x

tx e dt
�

�
� �

All values of x are legal.

Figure 5-1 Plot of erf x

ERFC
This function evaluates the complementary error function.

Function Return Value
ERFC � Function value. (Output)

78 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFC(X)

Specific: The specific interface names are S_ERFC and D_ERFC.

FORTRAN 77 Interface
Single: ERFC(X)

Double: The double precision function name is DERFC.

Example
In this example, erfc(1.0) is computed and printed.

 USE ERFC_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.0
 VALUE = ERFC(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ERFC(�, F6.3, �) = �, F6.3)
 END

Output
ERFC(1.000) = 0.157

Comments
Informational error
Type Code

 2 1 The function underflows because X is too large.

Description
The complementary error function, erfc(x), is defined to be

2
2erfc() t

x
x e dt

�

�

�
� �

The argument x must not be so large that the result underflows. Approximately, x should be less
than

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 79

� �
1/ 2

ln s�� ��
� �

where s = AMACH(1) (see the Reference Material section of this manual) is the smallest
representable positive floating-point number.

Figure 5-2 Plot of erfc x

ERFCE
This function evaluates the exponentially scaled complementary error function.

Function Return Value
ERFCE � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFCE (X)

Specific: The specific interface names are S_ERFCE and D_ERFCE.

80 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

FORTRAN 77 Interface
Single: ERFCE (X)

Double: The double precision function name is DERFCE.

Example
In this example, ERFCE(1.0) = e��� erfc(1.0) is computed and printed.

 USE ERFCE_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.0
 VALUE = ERFCE(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ERFCE(�, F6.3, �) = �, F6.3)
 END

Output
ERFCE(1.000) = 0.428

Comments
Informational error
Type Code

 2 1 The function underflows because X is too large.

Description
The function ERFCE(X) computes

� �
2

erfc xe x

where erfc(x) is the complementary error function. See ERFC (page 77) for its definition.

To prevent the answer from underflowing, x must be greater than

min ln(/ 2)x b� ��

where b = AMACH(2) is the largest representable floating-point number.

CERFE
This function evaluates a scaled function related to ERFC..

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 81

Function Return Value
CERFE � Complex function value. (Output)

Required Arguments
Z � Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CERFE (Z)

Specific: The specific interface names are C_CERFE and Z_CERFE.

FORTRAN 77 Interface
Complex: CERFE (Z)

Double complex: The double complex function name is ZERFE.

Example
In this example, CERFE(2.5 + 2.5i) is computed and printed.

 USE CERFE_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (2.5, 2.5)
 VALUE = CERFE(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CERFE(�, F6.3, �,�, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
CERFE(2.500, 2.500) = (0.117, 0.108)

Description
Function CERFCE is defined to be

2 2 22erfc()z z t

z
e iz ie e dt

�

�
� �

� � � �

Let b = AMACH(2) be the largest floating-point number. The argument z must satisfy

z b�

82 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

or else the value returned is zero. If the argument z does not satisfy (�z)� � (�z)� � log b, then b
is returned. All other arguments are legal (Gautschi 1969, 1970).

ERFI
This function evaluates the inverse error function.

Function Return Value
ERFI � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFI (X)

Specific: The specific interface names are S_ERFI and D_ERFI.

FORTRAN 77 Interface
Single: ERFI (X)

Double: The double precision function name is DERFI.

Example
In this example, erf��(erf(1.0)) is computed and printed.

 USE ERFI_INT
 USE ERF_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = ERF(1.0)
 VALUE = ERFI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ERFI(�, F6.3, �) = �, F6.3)
 END

Output
ERFI(0.843) = 1.000

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 83

Comments
Informational error
Type Code

 3 2 Result of ERFI(X) is accurate to less than one-half precision because the
 absolute value of the argument is too large.

Description
Function ERFI(X) computes the inverse of the error function erf x, defined in ERF (page 76).

The function ERFI(X) is defined for |x| < 1. If x� < |x| < 1, then the answer will be less
accurate than half precision. Very approximately,

max 1 /(4)x � �� �

where � = AMACH(4) is the machine precision.

Figure 5-3 Plot of erf��x

ERFCI
This function evaluates the inverse complementary error function.

Function Return Value
ERFCI � Function value. (Output)

84 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ERFCI (X)

Specific: The specific interface names are S_ERFCI and D_ERFCI.

FORTRAN 77 Interface
Single: ERFCI (X)

Double: The double precision function name is DERFCI.

Example
In this example, erfc��(erfc(1.0)) is computed and printed.

 USE ERFCI_INT
 USE ERFC_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = ERFC(1.0)
 VALUE = ERFCI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ERFCI(�, F6.3, �) = �, F6.3)
 END

Output
ERFCI(0.157) = 1.000

Comments
Informational error
Type Code

 3 2 Result of ERFCI(X) is accurate to less than one-half precision because the
 argument is too close to 2.0.

Description
The function ERFCI(X) computes the inverse of the complementary error function erfc x,
defined in ERFC (page 77).

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 85

The function ERFCI(X) is defined for 0 < x < 2. If x� < x < 2, then the answer will be less
accurate than half precision. Very approximately,

max 2 /(4)x � �� �

where � = AMACH(4) is the machine precision.

Figure 5-4 Plot of erf��x

DAWS
This function evaluates Dawson�s function.

Function Return Value
DAWS � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: DAWS (X)

Specific: The specific interface names are S_DAWS and D_DAWS.

86 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

FORTRAN 77 Interface
Single: DAWS (X)

Double: The double precision function name is DDAWS.

Example
In this example, DAWS(1.0) is computed and printed.

 USE DAWS_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.0
 VALUE = DAWS(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� DAWS(�, F6.3, �) = �, F6.3)
 END

Output
DAWS(1.000) = 0.538

Comments
1. Informational error

Type Code

 2 1 The function underflows because the absolute value of X is too large.

2. The Dawson function is closely related to the error function for imaginary arguments.

Description
Dawson�s function is defined to be

2 2

0

xx te e dt�

�

It is closely related to the error function for imaginary arguments.

So that Dawson�s function does not underflow, |x| must be less than 1/(2s). Here, s = AMACH(1)
is the smallest representable positive floating-point number.

FRESC
This function evaluates the cosine Fresnel integral.

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 87

Function Return Value
FRESC � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: FRESC (X)

Specific: The specific interface names are S_FRESC and D_FRESC.

FORTRAN 77 Interface
Single: FRESC (X)

Double: The double precision function name is DFRESC.

Example
In this example, C(1.75) is computed and printed.

 USE FRESC_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.75
 VALUE = FRESC(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� FRESC(�, F6.3, �) = �, F6.3)
 END

Output
FRESC(1.750) = 0.322

Description
The cosine Fresnel integral is defined to be

2

0
() cos

2
x

C x t dt�� �
� � �

� �
�

All values of x are legal.

88 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

FRESS
This function evaluates the sine Fresnel integral.

Function Value Return
FRESS � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: FRESS (X)

Specific: The specific interface names are S_FRESS and D_FRESS.

FORTRAN 77 Interface
Single: FRESS (X)

Double: The double precision function name is DFRESS.

Example
In this example, S(1.75) is computed and printed.

 USE FRESS_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 1.75
 VALUE = FRESS(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� FRESS(�, F6.3, �) = �, F6.3)
 END

Output
FRESS(1.750) = 0.499

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions � 89

Description
The sine Fresnel integral is defined to be

2

0
() sin

2
x

S x t dt�� �
� � �

� �
�

All values of x are legal.

90 � Chapter 5: Error Function and Related Functions IMSL MATH LIBRARY /Special Functions

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 91

Chapter 6: Bessel Functions

Routines
6.1. Bessel Functions of Order 0 and 1

Evaluates J�(x) .. BSJ0 92
Evaluates J�(x) .. BSJ1 94
Evaluates Y�(x) ...BSY0 95
Evaluates Y�(x) ...BSY1 97
Evaluates I�(x).. BSI0 98
Evaluates I�(x).. BSI1 100
Evaluates K�(x) ...BSK0 101
Evaluates K�(x) ...BSK1 103

Evaluates e�|x|I�(x)...BSI0E 104

Evaluates e�|x|I�(x)...BSI1E 106
Evaluates exK�(x) ... BSK0E 107
Evaluates exK�(x) ... BSK1E 108

6.2. Series of Bessel Functions, Integer Order
Evaluates Jk(x), k = 0, �, n � 1 ... BSJNS 109
Evaluates Ik(x), k = 0, �, n � 1 ... BSINS 111

6.3. Series of Bessel Functions, Real Order and Argument
Evaluates J� � k(x), k = 0, �, n � 1 ..BSJS 113
Evaluates Y� � k(x), k = 0, �, n � 1 .. BSYS 115
Evaluates I� � k(x), k = 0, �, n � 1 ..BSIS 117

Evaluates e�xI� � k(x), k = 0, �, n � 1 BSIES 118
Evaluates K� � k(x), k = 0, �, n � 1 .. BSKS 120

Evaluates exK� � k(x), k = 0, �, n � 1...................................BSKES 121

6.4. Series of Bessel Functions, Real Order and Complex Argument
Evaluates J� � k(z), k = 0, �, n � 1 ..CBJS 123

92 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Evaluates Y� � k(z), k = 0, �, n � 1 ...CBYS 125
Evaluates I� � k(z), k = 0, �, n � 1 ...CBIS 127
Evaluates K� � k(z), k = 0, �, n � 1 ...CBKS 129

Usage Notes
The following table lists the Bessel function routines by argument and order type:

 Real Argument Complex Argument
 Order Order
Function 0 1 integer real Integer Real
J�(x) BSJ0

p. 92
BSJ1
p. 94

BSJNS
p. 109

BSJS
p. 113

BSJNS
p. 109

CBJS
p. 123

Y�(x) BSY0
p. 95

BSY1
p. 97

 BSYS
p. 115

 CBYS
p. 125

I�(x) BSI0
p. 98

BSI1
p. 100

BSINS
p. 111

BSIS
p. 117

BSINS
p. 111

CBIS
p. 127

e�|x|I�(x) BSI0E
p. 104

BSI1E
p. 106

 BSIES
p. 118

K�(x) BSK0
p. 101

BSK1
p. 103

 BSKS
p. 120

 CBKS
p. 129

e�|x|K�(x) BSK0E
p. 107

BSK1E
p. 108

 BSKES
p. 121

BSJ0
This function evaluates the Bessel function of the first kind of order zero.

Function Value Return
BSJ0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSJ0 (X)

Specific: The specific interface names are S_BSJ0 and D_BSJ0.

FORTRAN 77 Interface
Single: BSJ0 (X)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 93

Double: The double precision function name is DBSJ0.

Example
In this example, J�(3.0) is computed and printed.

 USE BSJ0_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 3.0
 VALUE = BSJ0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSJ0(�, F6.3, �) = �, F6.3)
 END

Output
BSJ0(3.000) = -0.260

Description
The Bessel function J�(x) is defined to be

� � � �0 0

1 cos sinJ x x d
�

� �
�

� �

To prevent the answer from being less accurate than half precision, |x| should be smaller than

1/ �

For the result to have any precision at all, |x| must be less than 1/�. Here, � is the machine
precision, � = AMACH(4).

94 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Figure 6-1 Plot of J�(x) and J�(x)

BSJ1
This function evaluates the Bessel function of the first kind of order one.

Function Return Value
BSJ1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSJ1 (X)

Specific: The specific interface names are S_BSJ1 and D_BSJ1.

FORTRAN 77 Interface
Single: BSJ1 (X)

Double: The double precision function name is DBSJ1.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 95

Example
In this example, J�(2.5) is computed and printed.

 USE BSJ1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 2.5
 VALUE = BSJ1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSJ1(�, F6.3, �) = �, F6.3)
 END

Output
BSJ1(2.500) = 0.497

Comments
Informational error
Type Code

 2 1 The function underflows because the absolute value of X is too small.

Description
The Bessel function J�(x) is defined to be

� � � �1 0

1 cos sinθ θ θJ x x d
�

�
� ��

The argument x must be zero or larger in absolute value than 2s to prevent J�(x) from
underflowing. Also, |x| should be smaller than

1/ �

to prevent the answer from being less accurate than half precision. |x| must be less than 1/� for
the result to have any precision at all. Here, � is the machine precision, � = AMACH(4), and
s = AMACH(1) is the smallest representable positive floating-point number.

BSY0
This function evaluates the Bessel function of the second kind of order zero.

Function Return Value
BSY0 � Function value. (Output)

96 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSY0 (X)

Specific: The specific interface names are S_BSY0 and D_BSY0.

FORTRAN 77 Interface
Single: BSY0 (X)

Double: The double precision function name is DBSY0.

Example
In this example, Y�(3.0) is computed and printed.

 USE BSY0_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 3.0
 VALUE = BSY0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSY0(�, F6.3, �) = �, F6.3)
 END

Output
BSY0(3.000) = 0.377

Description
The Bessel function Y�(x) is defined to be

� � � � sinh
0 0 0

1 2sin sin z tY x x d e dt
�

� �
� �

�
�

� �� �

To prevent the answer from being less accurate than half precision, x should be smaller than

1/ �

For the result to have any precision at all, |x| must be less than 1/�. Here, � is the machine
precision, � = AMACH(4).

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 97

Figure 6-2 Plot of Y�(x) and Y�(x)

BSY1
This function evaluates the Bessel function of the second kind of order one.

Function Return Value
BSY1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSY1 (X)

Specific: The specific interface names are S_BSY1 and D_BSY1.

FORTRAN 77 Interface
Single: BSY1 (X)

98 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Double: The double precision function name is DBSY1.

Example
In this example, Y�(3.0) is computed and printed.

 USE BSY1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 3.0
 VALUE = BSY1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSY1(�, F6.3, �) = �, F6.3)
 END

Output
BSY1(3.000) = 0.325

Description
The Bessel function Y�(x) is defined to be

� � � � � � sinh
1 0 0

1 1sin sin t t z tY x x d e e e dt
�

� � �
� �

�
� �

� � � � �� �

Y�(x) is defined for x > 0. To prevent the answer from being less accurate than half precision, x
should be smaller than

1/ �

For the result to have any precision at all, |x| must be less than 1/�. Here, � is the machine
precision, � = AMACH(4).

BSI0
This function evaluates the modified Bessel function of the first kind of order zero.

Function Return Value
BSI0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 99

FORTRAN 90 Interface
Generic: BSI0 (X)

Specific: The specific interface names are S_BSI0 and D_BSI0.

FORTRAN 77 Interface
Single: BSI0 (X)

Double: The double precision function name is DBSI0.

Example
In this example, I�(4.5) is computed and printed.

 USE BSI0_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 4.5
 VALUE = BSI0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSI0(�, F6.3, �) = �, F6.3)
 END

Output
BSI0(4.500) = 17.481

Description
The Bessel function I�(x) is defined to be

� � � �0 0

1 cosh cosI x x d
�

� �
�

� �

The absolute value of the argument x must not be so large that e|x| overflows.

100 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Figure 6-3 Plot of I�(x) and I�(x)

BSI1
This function evaluates the modified Bessel function of the first kind of order one.

Function Return Value
BSI1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSI1 (X)

Specific: The specific interface names are S_BSI1 and D_BSI1.

FORTRAN 77 Interface
Single: BSI1 (X)

Double: The double precision function name is DBSI1.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 101

Example
In this example, I�(4.5) is computed and printed.

 USE BSI1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 4.5
 VALUE = BSI1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSI1(�, F6.3, �) = �, F6.3)
 END

Output
BSI1(4.500) = 15.389

Comments
Informational error
Type Code

 2 1 The function underflows because the absolute value of X is too small.

Description
The Bessel function I�(x) is defined to be

� � cosθ
1 0

1 e cosθ θxI x d
�

�

� �

The argument should not be so close to zero that I�(x) � x/2 underflows, nor so large in absolute

value that e|x| and, therefore, I�(x) overflows.

BSK0
This function evaluates the modified Bessel function of the second kind of order zero.

Function Return Value
BSK0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

102 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

FORTRAN 90 Interface
Generic: BSK0 (X)

Specific: The specific interface names are S_BSK0 and D_BSK0.

FORTRAN 77 Interface
Single: BSK0 (X)

Double: The double precision function name is DBSK0.

Example
In this example, K�(0.5) is computed and printed.

 USE BSK0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.5
 VALUE = BSK0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSK0(�, F6.3, �) = �, F6.3)
 END

Output
BSK0(0.500) = 0.924

Comments
Informational error
Type Code

 2 1 The function underflows because X is too large.

Description
The Bessel function K�(x) is defined to be

� � � �0 0
cos sinhK x x t dt

�

� �

The argument must be larger than zero, but not so large that the result, approximately equal to

� �/ 2 xx e�
�

underflows.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 103

Figure 6-4 Plot of K�(x) and K�(x)

BSK1
This function evaluates the modified Bessel function of the second kind of order one.

Function Return Value
BSK1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSK1 (X)

Specific: The specific interface names are S_BSK1 and D_BSK1.

FORTRAN 77 Interface
Single: BSK1 (X)

104 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Double: The double precision function name is DBSK1.

Example
In this example, K�(0.5) is computed and printed.

 USE BSK1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.5
 VALUE = BSK1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSK1(�, F6.3, �) = �, F6.3)
 END

Output
BSK1(0.500) = 1.656

Comments
Informational error
Type Code

 2 1 The function underflows because X is too large.

Description
The Bessel function K�(x) is defined to be

� � � �1 0
sin sinh sinhK x x t t dt

�

� �

The argument x must be large enough (> max(1/b, s)) that K�(x) does not overflow, and x must
be small enough that the approximate answer,

� �/ 2 xx e�
�

does not underflow. Here, s is the smallest representable positive floating-point number,
s = AMACH(1) , and b = AMACH(2) is the largest representable floating-point number.

BSI0E
This function evaluates the exponentially scaled modified Bessel function of the first kind of order
zero.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 105

Function Return Value
BSI0E � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSI0E (X)

Specific: The specific interface names are S_BSI0E and D_BSI0E.

FORTRAN 77 Interface
Single: BSI0E (X)

Double: The double precision function name is DBSI0E.

Example
In this example, BSI0E(4.5) is computed and printed.

 USE BSI0E_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 4.5
 VALUE = BSI0E(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSI0E(�, F6.3, �) = �, F6.3)
 END

Output
BSI0E(4.500) = 0.194

Description

Function BSI0E computes e�|x| I�(x). For the definition of the Bessel function I�(x), see BSI0
(page 98).

106 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

BSI1E
This function evaluates the exponentially scaled modified Bessel function of the first kind of order
one.

Function Return Value
BSI1E � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSI1E (X)

Specific: The specific interface names are S_BSI1E and D_BSI1E.

FORTRAN 77 Interface
Single: BSI1E (X)

Double: The double precision function name is DBSI1E.

Example
In this example, BSI1E(4.5) is computed and printed.

 USE BSI1E_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 4.5
 VALUE = BSI1E(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSI1E(�, F6.3, �) = �, F6.3)
 END

Output
BSI1E(4.500) = 0.171

Comments
Informational error
Type Code

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 107

 2 1 The function underflows because the absolute value of X is too small.

Description

Function BSI1E computes e�|x| I�(x). For the definition of the Bessel function I�(x), see BSI1
(page 100). The function BSI1E underflows if |x|/2 underflows.

BSK0E
This function evaluates the exponentially scaled modified Bessel function of the second kind of
order zero.

Function Return Value
BSK0E � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSK0E (X)

Specific: The specific interface names are S_BSK0E and D_BSK0E.

FORTRAN 77 Interface
Single: BSK0E (X)

Double: The double precision function name is DBSK0E.

Example
In this example, BSK0E(0.5) is computed and printed.

 USE BSK0E_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.5
 VALUE = BSK0E(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSK0E(�, F6.3, �) = �, F6.3)
 END

108 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Output
BSK0E(0.500) = 1.524

Description

Function BSK0E computes exK�(x). For the definition of the Bessel function K�(x), see BSK0
(page 101). The argument must be greater than zero for the result to be defined.

BSK1E
This function evaluates the exponentially scaled modified Bessel function of the second kind of
order one.

Function Return Value
BSK1E � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSK1E (X)

Specific: The specific interface names are S_BSK1E and D_BSK1E.

FORTRAN 77 Interface
Single: BSK1E (X)

Double: The double precision function name is DBSK1E.

Example
In this example, BSK1E(0.5) is computed and printed.

 USE BSK1E_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.5
 VALUE = BSK1E(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BSK1E(�, F6.3, �) = �, F6.3)
 END

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 109

Output
BSK1E(0.500) = 2.731

Description

Function BSK1E computes exK�(x). For the definition of the Bessel function K�(x), see BSK1

(page 103). The answer BSK1E = exK�(x) � 1/x overflows if x is too close to zero.

BSJNS
Evaluates a sequence of Bessel functions of the first kind with integer order and real or complex
arguments.

Required Arguments
X � Argument for which the sequence of Bessel functions is to be evaluated. (Input)

The absolute value of real arguments must be less than 10�.
The absolute value of complex arguments must be less than 10�.

N � Number of elements in the sequence. (Input)
It must be a positive integer.

BS � Vector of length N containing the values of the function through the series. (Output)
BS(I) contains the value of the Bessel function of order I � 1 at x for I = 1 to N.

FORTRAN 90 Interface
Generic: CALL BSJNS (X, N, BS)

Specific: The specific interface names are S_BSJNS, D_BSJNS, C_BSJNS, and
 Z_BSJNS

FORTRAN 77 Interface
Single: CALL BSJNS (X, N, BS)

Double: The double precision name is DBSJNS.

Complex: The complex name is CBJNS.

Double Complex: The double complex name is DCBJNS.

Example
In this example, Jn(10.0), n = 0, �, 9 is computed and printed.

110 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

 USE BSJNS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=10)
!
 INTEGER K, NOUT
 REAL BS(N), X
 ! Compute
 X = 10.0
 CALL BSJNS (X, N, BS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, BS(K)
 10 CONTINUE
99999 FORMAT (� J sub �, I2, � (�, F6.3, �) = �, F6.3)
 END

Output
J sub 0 (10.000) = -0.246
J sub 1 (10.000) = 0.043
J sub 2 (10.000) = 0.255
J sub 3 (10.000) = 0.058
J sub 4 (10.000) = -0.220
J sub 5 (10.000) = -0.234
J sub 6 (10.000) = -0.014
J sub 7 (10.000) = 0.217
J sub 8 (10.000) = 0.318
J sub 9 (10.000) = 0.292

Description
The complex Bessel function Jn(z) is defined to be

� � � �
0

1 cos sinnJ z z n d
�

� � �
�

� ��

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses
backward recursion with strict error control.

Additional Example
In this example, Jn(10 + 10i), n = 0, �, 10 is computed and printed.

 USE BSJNS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=11)
!
 INTEGER K, NOUT
 COMPLEX CBS(N), Z
! Compute
 Z = (10.0, 10.0)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 111

 CALL BSJNS (Z, N, CBS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (� J sub �, I2, � ((�, F6.3, �,�, F6.3, &
 �)) = (�, F9.3, �,�, F9.3, �)�)
 END

Output
J sub 0 ((10.000,10.000)) = (-2314.975, 411.563)
J sub 1 ((10.000,10.000)) = (-460.681,-2246.627)
J sub 2 ((10.000,10.000)) = (2044.245, -590.157)
J sub 3 ((10.000,10.000)) = (751.498, 1719.746)
J sub 4 ((10.000,10.000)) = (-1302.871, 880.632)
J sub 5 ((10.000,10.000)) = (-920.394, -846.345)
J sub 6 ((10.000,10.000)) = (419.501, -843.607)
J sub 7 ((10.000,10.000)) = (665.930, 88.480)
J sub 8 ((10.000,10.000)) = (108.586, 439.392)
J sub 9 ((10.000,10.000)) = (-227.548, 176.165)
J sub 10 ((10.000,10.000)) = (-154.831, -76.050)

BSINS
Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or
complex arguments.

Required Arguments
X � Argument for which the sequence of Bessel functions is to be evaluated. (Input)

For real argument exp(|x|) must not overflow. For complex arguments x must be less
than 10� in absolute value.

N � Number of elements in the sequence. (Input)

BSI � Vector of length N containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order I � 1 at x for I = 1 to N.

FORTRAN 90 Interface
Generic: CALL BSINS (X, N, BSI)

Specific: The specific interface names are S_BSINS, D_BSINS, C_BSINS, and
 Z_BSINS.

FORTRAN 77 Interface
Single: CALL BSINS (X, N, BSI)

112 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Double: The double precision name is DBSINS.

Complex: The complex name is CBINS.

Double Complex: The double complex name is DCBINS.

Example
In this example, In(10.0), n = 0, �, 10 is computed and printed.

 USE BSINS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=11)
!
 INTEGER K, NOUT
 REAL BSI(N), X
! Compute
 X = 10.0
 CALL BSINS (X, N, BSI)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, BSI(K)
 10 CONTINUE
99999 FORMAT (� I sub �, I2, � (�, F6.3, �) = �, F9.3)
 END

Output
I sub 0 (10.000) = 2815.716
I sub 1 (10.000) = 2670.988
I sub 2 (10.000) = 2281.519
I sub 3 (10.000) = 1758.381
I sub 4 (10.000) = 1226.490
I sub 5 (10.000) = 777.188
I sub 6 (10.000) = 449.302
I sub 7 (10.000) = 238.026
I sub 8 (10.000) = 116.066
I sub 9 (10.000) = 52.319
I sub 10 (10.000) = 21.892

Description
The complex Bessel function In(z) is defined to be

� � � �cos

0

1 cosz
nI z e n d

�
�

� �
�

� �

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses
backward recursion with strict error control.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 113

Additional Example
In this example, In(10 + 10i), n = 0, �, 10 is computed and printed.

 USE BSINS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=11)
!
 INTEGER K, NOUT
 COMPLEX CBS(N), Z
! Compute
 Z = (10.0, 10.0)
 CALL BSINS (Z, N, CBS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (� I sub �, I2, � ((�, F6.3, �,�, F6.3, &
 �)) = (�, F9.3, �,�, F9.3, �)�)
 END

Output
I sub 0 ((10.000,10.000)) = (-2314.975, -411.563)
I sub 1 ((10.000,10.000)) = (-2246.627, -460.681)
I sub 2 ((10.000,10.000)) = (-2044.245, -590.157)
I sub 3 ((10.000,10.000)) = (-1719.746, -751.498)
I sub 4 ((10.000,10.000)) = (-1302.871, -880.632)
I sub 5 ((10.000,10.000)) = (-846.345, -920.394)
I sub 6 ((10.000,10.000)) = (-419.501, -843.607)
I sub 7 ((10.000,10.000)) = (-88.480, -665.930)
I sub 8 ((10.000,10.000)) = (108.586, -439.392)
I sub 9 ((10.000,10.000)) = (176.165, -227.548)
I sub 10 ((10.000,10.000)) = (154.831, -76.050)

BSJS
Evaluates a sequence of Bessel functions of the first kind with real order and real positive
arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

It must be at least zero and less than one.

X � Real argument for which the sequence of Bessel functions is to be evaluated. (Input)
It must be nonnegative.

N � Number of elements in the sequence. (Input)

114 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

BS � Vector of length N containing the values of the function through the series. (Output)
BS(I) contains the value of the Bessel function of order XNU + I � 1 at x for I = 1 to N.

FORTRAN 90 Interface
Generic: CALL BSJS (XNU, X, N, BS)

Specific: The specific interface names are S_BSJS and D_BSJS.

FORTRAN 77 Interface
Single: CALL BSJS (XNU, X, N, BS)

Double: The double precision name is DBSJS.

Example
In this example, J�(2.4048256), � = 0, �, 10 is computed and printed.

 USE BSJS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=11)
!
 INTEGER K, NOUT
 REAL BS(N), X, XNU
! Compute
 XNU = 0.0
 X = 2.4048256
 CALL BSJS (XNU, X, N, BS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, X, BS(K)
 10 CONTINUE
99999 FORMAT (� J sub �, F6.3, � (�, F6.3, �) = �, F10.3)
 END

Output
J sub 0.000 (2.405) = 0.000
J sub 1.000 (2.405) = 0.519
J sub 2.000 (2.405) = 0.432
J sub 3.000 (2.405) = 0.199
J sub 4.000 (2.405) = 0.065
J sub 5.000 (2.405) = 0.016
J sub 6.000 (2.405) = 0.003
J sub 7.000 (2.405) = 0.001
J sub 8.000 (2.405) = 0.000
J sub 9.000 (2.405) = 0.000
J sub 10.000 (2.405) = 0.000

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 115

Comments
Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The reference is

CALL B2JS (XNU, X, N, BS, WK)

The additional argument is

WK � work array of length 2 � N.

Description
The Bessel function J�(x) is defined to be

� � 2

0

(/ 2)() cos cos sin
(1/ 2)
xJ x x d

�
�

�

�
� � �

� �
�

� �
�

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward
recursion.

BSYS
Evaluates a sequence of Bessel functions of the second kind with real nonnegative order and real
positive arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

It must be at least zero and less than one.

X � Real positive argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N � Number of elements in the sequence. (Input)

BSY � Vector of length N containing the values of the function through the series. (Output)
BSY(I) contains the value of the Bessel function of order I � 1 + XNU at x for I = 1
to N.

FORTRAN 90 Interface
Generic: CALL BSYS (XNU, X, N, BSY)

Specific: The specific interface names are S_BSYS and D_BSYS.

FORTRAN 77 Interface
Single: CALL BSYS (XNU, X, N, BSY)

116 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Double: The double precision name is DBSYS.

Example
In this example, Y�������� � � 	 �(0.0078125), � = 1, 2, 3 is computed and printed.

 USE BSYS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=3)
!
 INTEGER K, NOUT
 REAL BSY(N), X, XNU
! Compute
 XNU = 0.015625
 X = 0.0078125
 CALL BSYS (XNU, X, N, BSY)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, X, BSY(K)
 10 CONTINUE
99999 FORMAT (� Y sub �, F6.3, � (�, F6.3, �) = �, F10.3)
 END

Output
Y sub 0.016 (0.008) = -3.189
Y sub 1.016 (0.008) = -88.096
Y sub 2.016 (0.008) = -22901.732

Description
The Bessel function Y�(x) is defined to be

� �

0

sinh

0

1() sin(sin)

1 cost t x t

Y x x d

e e e dt

�

�

� �

� �� �
�

��
�

�
� �

� �

� �� �� �

�

�

The variable � must satisfy 0 � � < 1. If this condition is not met, then BSi is set to �b. In
addition, x must be in [xm, xM] where xm = 6(16���) and xM = 16�. If x < xm, then
�b (b = AMACH(2), the largest representable number) is returned; and if x > xM, then zero is
returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS
FUNPACK 1976). It uses a special series expansion for small arguments. For moderate
arguments, an analytic continuation in the argument based on Taylor series with special rational
minimax approximations providing starting values is employed. An asymptotic expansion is
used for large arguments.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 117

BSIS
Evaluates a sequence of modified Bessel functions of the first kind with real order and real
positive arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

It must be greater than or equal to zero and less than one.

X � Real argument for which the sequence of Bessel functions is to be evaluated. (Input)

N � Number of elements in the sequence. (Input)

BSI � Vector of length N containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order I � 1 + XNU at x for I = 1 to N.

FORTRAN 90 Interface
Generic: CALL BSIS (XNU, X, N, BSI)

Specific: The specific interface names are S_BSIS and D_BSIS.

FORTRAN 77 Interface
Single: CALL BSIS (XNU, X, N, BSI)

Double: The double precision name is DBSIS.

Example
In this example, I� 	 �(10.0), � = 1, �, 10 is computed and printed.

 USE BSIS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=10)
!
 INTEGER K, NOUT
 REAL BSI(N), X, XNU
! Compute
 XNU = 0.0
 X = 10.0
 CALL BSIS (XNU, X, N, BSI)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, X, BSI(K)

118 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

 10 CONTINUE
99999 FORMAT (� I sub �, F6.3, � (�, F6.3, �) = �, F10.3)
 END

Output
I sub 0.000 (10.000) = 2815.717
I sub 1.000 (10.000) = 2670.988
I sub 2.000 (10.000) = 2281.519
I sub 3.000 (10.000) = 1758.381
I sub 4.000 (10.000) = 1226.491
I sub 5.000 (10.000) = 777.188
I sub 6.000 (10.000) = 449.302
I sub 7.000 (10.000) = 238.026
I sub 8.000 (10.000) = 116.066
I sub 9.000 (10.000) = 52.319

Description
The Bessel function I�(x) is defined to be

cos cosh

0 0

1 sin()() cos()x x t vtI x e d e dt
�

�

�

��
�� �

� �

�
� �

� �� �

The input x must be nonnegative and less than or equal to log(b) (b = AMACH(2), the largest
representable number). The argument � = XNU must satisfy 0 � � � 1.

Function BSIS is based on a code due to Cody (1983), which uses backward recursion.

BSIES
Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with
nonnegative real order and real positive arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

It must be at least zero and less than one.

X � Real positive argument for which the sequence of Bessel functions is to be evaluated.
(Input)
It must be nonnegative.

N � Number of elements in the sequence. (Input)

BSI � Vector of length N containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order I � 1 + XNU at x for I = 1 to N
multiplied by exp(�X).

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 119

FORTRAN 90 Interface
Generic: CALL BSIES (XNU, X, N, BSI)

Specific: The specific interface names are S_BSIES and D_BSIES.

FORTRAN 77 Interface
Single: CALL BSIES (XNU, X, N, BSI)

Double: The double precision name is DBSIES.

Example
In this example, I� 	 �(10.0), � = 1, �, 10 is computed and printed.

 USE BSIES_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=10)
!
 INTEGER K, NOUT
 REAL BSI(N), X, XNU
! Compute
 XNU = 0.0
 X = 10.0
 CALL BSIES (XNU, X, N, BSI)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) X, XNU+K-1, X, BSI(K)
 10 CONTINUE
99999 FORMAT (� exp(-�, F6.3, �) * I sub �, F6.3, &
 � (�, F6.3, �) = �, F6.3)
 END

Output
exp(-10.000) * I sub 0.000 (10.000) = 0.128
exp(-10.000) * I sub 1.000 (10.000) = 0.121
exp(-10.000) * I sub 2.000 (10.000) = 0.104
exp(-10.000) * I sub 3.000 (10.000) = 0.080
exp(-10.000) * I sub 4.000 (10.000) = 0.056
exp(-10.000) * I sub 5.000 (10.000) = 0.035
exp(-10.000) * I sub 6.000 (10.000) = 0.020
exp(-10.000) * I sub 7.000 (10.000) = 0.011
exp(-10.000) * I sub 8.000 (10.000) = 0.005
exp(-10.000) * I sub 9.000 (10.000) = 0.002

120 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Description

Function BSIES evaluates e�x I� � k 	 �(x), for k = 1, �, n. For the definition of I�(x), see BSIS
(page 117). The algorithm is based on a code due to Cody (1983), which uses backward
recursion.

BSKS
Evaluates a sequence of modified Bessel functions of the second kind of fractional order.

Required Arguments
XNU � Fractional order of the function. (Input)

XNU must be less than one in absolute value.

X � Argument for which the sequence of Bessel functions is to be evaluated. (Input)

NIN � Number of elements in the sequence. (Input)

BK � Vector of length NIN containing the values of the function through the series.
(Output)

FORTRAN 90 Interface
Generic: CALL BSKS (XNU, X, NIN, BK)

Specific: The specific interface names are S_BSKS and D_BSKS.

FORTRAN 77 Interface
Single: CALL BSKS (XNU, X, NIN, BK)

Double: The double precision name is DBSKS.

Example
In this example, K�	�(10.0), � = 1, �, 10 is computed and printed.

 USE BSKS_INT
 USE UMACH_INT
! Declare variables
 INTEGER NIN
 PARAMETER (NIN=10)
!
 INTEGER K, NOUT
 REAL BS(NIN), X, XNU
! Compute
 XNU = 0.0
 X = 10.0

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 121

 CALL BSKS (XNU, X, NIN, BS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, NIN
 WRITE (NOUT,99999) XNU+K-1, X, BS(K)
 10 CONTINUE
99999 FORMAT (� K sub �, F6.3, � (�, F6.3, �) = �, E10.3)
 END

Output
K sub 0.000 (10.000) = 0.178E-04
K sub 1.000 (10.000) = 0.186E-04
K sub 2.000 (10.000) = 0.215E-04
K sub 3.000 (10.000) = 0.273E-04
K sub 4.000 (10.000) = 0.379E-04
K sub 5.000 (10.000) = 0.575E-04
K sub 6.000 (10.000) = 0.954E-04
K sub 7.000 (10.000) = 0.172E-03
K sub 8.000 (10.000) = 0.336E-03
K sub 9.000 (10.000) = 0.710E-03

Comments
1. If NIN is positive, BK(1) contains the value of the function of order XNU, BK(2) contains

the value of the function of order XNU + 1, � and BK(NIN) contains the value of the
function of order XNU + NIN � 1.

2. If NIN is negative, BK(1) contains the value of the function of order XNU, BK(2) contains
the value of the function of order XNU � 1, � and BK(ABS(NIN)) contains the value of
the function of order XNU + NIN + 1.

Description
The Bessel function K�(x) is defined to be

/ 2 2 2() () () for arg
2 2

i iiK x e i J xe Y xe x
� �

��

� � �

� �

�

� �
� � � � �� �

	

Currently, � is restricted to be less than one in absolute value. A total of |n| values is stored in
the array BK. For positive n, BK(1) = K�(x), BK(2) = K� � �(x), �, BK(n) = K� � n 	 �(x). For
negative n, BK(1) = K�(x), BK(2) = K� 	 �(x), �, BK(|n|) = K� � n � �.

BSKS is based on the work of Cody (1983).

BSKES
Evaluates a sequence of exponentially scaled modified Bessel functions of the second kind of
fractional order.

122 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Required Arguments
XNU � Fractional order of the function. (Input)

XNU must be less than 1.0 in absolute value.

X � Argument for which the sequence of Bessel functions is to be evaluated. (Input)

NIN � Number of elements in the sequence. (Input)

BKE � Vector of length NIN containing the values of the function through the series.
(Output)

FORTRAN 90 Interface
Generic: CALL BSKES (XNU, X, NIN, BKE)

Specific: The specific interface names are S_BSKES and D_BSKES.

FORTRAN 77 Interface
Single: CALL BSKES (XNU, X, NIN, BKE)

Double: The double precision name is DBSKES.

Example
In this example, K� 	 �/�(2.0), � = 1, �, 6 is computed and printed.

 USE BSKES_INT
 USE UMACH_INT
! Declare variables
 INTEGER NIN
 PARAMETER (NIN=6)
!
 INTEGER K, NOUT
 REAL BKE(NIN), X, XNU
! Compute
 XNU = 0.5
 X = 2.0
 CALL BSKES (XNU, X, NIN, BKE)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, NIN
 WRITE (NOUT,99999) X, XNU+K-1, X, BKE(K)
 10 CONTINUE
99999 FORMAT (� exp(�, F6.3, �) * K sub �, F6.3, &
 � (�, F6.3, �) = �, F8.3)
 END

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 123

Output
exp(2.000) * K sub 0.500 (2.000) = 0.886
exp(2.000) * K sub 1.500 (2.000) = 1.329
exp(2.000) * K sub 2.500 (2.000) = 2.880
exp(2.000) * K sub 3.500 (2.000) = 8.530
exp(2.000) * K sub 4.500 (2.000) = 32.735
exp(2.000) * K sub 5.500 (2.000) = 155.837

Comments
1. If NIN is positive, BKE(1) contains EXP(X) times the value of the function of order XNU,

BKE(2) contains EXP(X) times the value of the function of order XNU + 1, �, and
BKE(NIN) contains EXP(X) times the value of the function of order XNU + NIN � 1.

2. If NIN is negative, BKE(1) contains EXP(X) times the value of the function of order XNU,
BKE(2) contains EXP(X) times the value of the function of order XNU � 1, �, and
BKE(ABS(NIN)) contains EXP(X) times the value of the function of order
XNU + NIN + 1.

Description

Function BSKES evaluates exK� � k 	 �(x), for k = 1, �, n. For the definition of K�(x), see BSKS
(page 120).

Currently, � is restricted to be less than 1 in absolute value. A total of |n| values is stored in the
array BKE. For n positive, BKE(1) contains exK�(x), BKE(2) contains exK� � �(x), �, and BKE(N)

contains exK� � n 	 �(x). For n negative, BKE(1) contains exK�(x), BKE(2) contains

exK� 	 �(x), �, and BKE(|n|) contains exK� � n � �(x). This routine is particularly useful for
calculating sequences for large x provided n � x. (Overflow becomes a problem if n << x.) n
must not be zero, and x must not be greater than zero. Moreover, ��� must be less than 1.
Also, when |n| is large compared with x, �� + n| must not be so large that
exK��n(x) � ex	
�� + n|)/[2(x/2)|� � n|] overflows.

BSKES is based on the work of Cody (1983).

CBJS
Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

XNU must be greater than �1/2.

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

124 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

N � Number of elements in the sequence. (Input)

CBS � Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1
to N.

FORTRAN 90 Interface
Generic: CALL CBJS (XNU, Z, N, CBS)

Specific: The specific interface names are S_CBJS and D_CBJS.

FORTRAN 77 Interface
Single: CALL CBJS (XNU, Z, N, CBS)

Double: The double precision name is DCBJS.

Example
In this example, J�.
 � � 	 �(1.2 + 0.5i), � = 1, �, 4 is computed and printed.

 USE CBJS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=4)
!
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
! Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBJS (XNU, Z, N, CBS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (� J sub �, F6.3, � ((�, F6.3, �,�, F6.3, &
 �)) = (�, F9.3, �,�, F9.3, �)�)
 END

Output
J sub 0.300 ((1.200, 0.500)) = (0.774, -0.107)
J sub 1.300 ((1.200, 0.500)) = (0.400, 0.159)
J sub 2.300 ((1.200, 0.500)) = (0.087, 0.092)
J sub 3.300 ((1.200, 0.500)) = (0.008, 0.024)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 125

Comments
Informational errors
Type Code

 3 1 One of the continued fractions failed.

 4 2 Only the first several entries in CBS are valid.

Description
The Bessel function J�(z) is defined to be

� � sinh

0 0

1 sin()cos(sin)

for arg
2

z t vtJ z z d e dt

z

�

�

��
� �� �

� �

�

�
�

� � �

�

� �

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

This code computes J�(z) from the modified Bessel function I�(z) (see page 129), using the

following relation, with � = ei	
�:

3 3

(/) for / 2 arg
()

() for arg / 2
v

v
v

I z z
Y z

I z z

� � � �

� � � �

� � ���
� �

� � ���

CBYS
Evaluates a sequence of Bessel functions of the second kind with real order and complex
arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

XNU must be greater than �1/2.

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N � Number of elements in the sequence. (Input)

CBS � Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1
to N.

FORTRAN 90 Interface
Generic: CALL CBYS (XNU, Z, N, CBS)

126 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Specific: The specific interface names are S_CBYS and D_CBYS.

FORTRAN 77 Interface
Single: CALL CBYS (XNU, Z, N, CBS)

Double: The double precision name is DCBYS.

Example
In this example, Y�0.3 + n � 1(1.2 + 0.5i), � = 1, �, 4 is computed and printed.

 USE CBYS_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=4)
!
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
! Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBYS (XNU, Z, N, CBS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (� Y sub �, F6.3, � ((�, F6.3, �,�, F6.3, &
 �)) = (�, F9.3, �,�, F9.3, �)�)
 END

Output
Y sub 0.300 ((1.200, 0.500)) = (-0.013, 0.380)
Y sub 1.300 ((1.200, 0.500)) = (-0.716, 0.338)
Y sub 2.300 ((1.200, 0.500)) = (-1.048, 0.795)
Y sub 3.300 ((1.200, 0.500)) = (-1.625, 3.684)

Comments
1. Workspace may be explicitly provided, if desired, by use of C2YS/DC2Y.

The reference is:

CALL C2YS (XNU, Z, N, CBS, FK)

The additional argument is:

FK � complex work vector of length N.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 127

2. Informational errors
Type Code

 3 1 One of the continued fractions failed.
 4 2 Only the first several entries in CBS are valid.

Description
The Bessel function Y�(z) is defined to be

0

sinh

0

1() sin(sin)

1 cos()

for arg
2

v

vt vt z t

Y z z v d

e e v e dt

z

�

� � �
�

�
�

�

�
�

� �

� �� �� �

�

�

�

This code is based on the code BESSEC of Barnett (1981) and Thompson and Barnett (1987).

This code computes Y�(z) from the modified Bessel functions I�(z) and K�(z) (see CBIS, page
127, and CBKS, page 129), using the following relation:

/ 2 (1) / 2 / 22() () () for arg / 2i v i v i
vY ze e I z e K z z� � �

� �
� �

�

� �

� � � � �

CBIS
Evaluates a sequence of modified Bessel functions of the first kind with real order and complex
arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

XNU must be greater than �1/2.

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N � Number of elements in the sequence. (Input)

CBS � Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1
to N.

FORTRAN 90 Interface
Generic: CALL CBIS (XNU, Z, N, CBS)

128 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

Specific: The specific interface names are S_CBIS and D_CBIS.

FORTRAN 77 Interface
Single: CALL CBIS (XNU, Z, N, CBS)

Double: The double precision name is DCBIS.

Example
In this example, I�.
 � � 	 �(1.2 + 0.5i), � = 1, �, 4 is computed and printed.

 USE CBIS_INT
 USE UMACH_INT

! Declare variables
 INTEGER N
 PARAMETER (N=4)
!
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
! Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBIS (XNU, Z, N, CBS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (� I sub �, F6.3, � ((�, F6.3, �,�, F6.3, &
 �)) = (�, F9.3, �,�, F9.3, �)�)
 END

Output
I sub 0.300 ((1.200, 0.500)) = (1.163, 0.396)
I sub 1.300 ((1.200, 0.500)) = (0.447, 0.332)
I sub 2.300 ((1.200, 0.500)) = (0.082, 0.127)
I sub 3.300 ((1.200, 0.500)) = (0.006, 0.029)

Comments
Informational errors
Type Code

 3 1 One of the continued fractions failed.

 4 2 Only the first several entries in CBS are valid.

Description
The modified Bessel function I�(z) is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 129

/ 2 / 2() () for arg
2

v i i
v vI z e J ze z� �

�

�
�

� � � �

where the Bessel function J�(z) is defined in BSJS (page 113).

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For large arguments, z, Temme�s (1975) algorithm is used to find I�(z). The I�(z) values are
recurred upward (if this is stable). This involves evaluating a continued fraction. If this
evaluation fails to converge, the answer may not be accurate. For moderate and small
arguments, Miller�s method is used.

CBKS
Evaluates a sequence of modified Bessel functions of the second kind with real order and complex
arguments.

Required Arguments
XNU � Real argument which is the lowest order desired. (Input)

XNU must be greater than �1/2.

Z � Complex argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N � Number of elements in the sequence. (Input)

CBS � Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I � 1 at Z for I = 1
to N.

FORTRAN 90 Interface
Generic: CALL CBKS (XNU, Z, N, CBS)

Specific: The specific interface names are S_CBKS and D_CBKS.

FORTRAN 77 Interface
Single: CALL CBKS (XNU, Z, N, CBS)

Double: The double precision name is DCBKS.

Example
In this example, K�.
 � v 	 �(1.2 + 0.5i), � = 1, �, 4 is computed and printed.

130 � Chapter 6: Bessel Functions IMSL MATH LIBRARY Special Functions

 USE UMACH_INT
 USE CBKS_INT
! Declare variables
 INTEGER N
 PARAMETER (N=4)
!
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
! Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBKS (XNU, Z, N, CBS)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (� K sub �, F6.3, � ((�, F6.3, �,�, F6.3, &
 �)) = (�, F9.3, �,�, F9.3, �)�)
 END

Output

K sub 0.300 ((1.200, 0.500)) = (0.246, -0.200)
K sub 1.300 ((1.200, 0.500)) = (0.336, -0.362)
K sub 2.300 ((1.200, 0.500)) = (0.587, -1.126)
K sub 3.300 ((1.200, 0.500)) = (0.719, -4.839)

Comments
Workspace may be explicitly provided, if desired, by use of C2KS/DC2KS. The reference is

CALL C2KS (XNU, Z, N, CBS, FK)

The additional argument is

FK � Complex work vector of length N.

 Informational errors
Type Code

 3 1 One of the continued fractions failed.
 4 2 Only the first several entries in CBS are valid.

Description
The Bessel function K�(z) is defined to be

/ 2 / 2 / 2() () () for arg
2 2

v i i i
v v vK z e iJ ze Y ze z� � �

� �

�� �� � � � �� �

where the Bessel function J�(z) is defined in CBJS (page 123) and Y�(z) is defined in CBYS
(page 125).

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions � 131

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For moderate or large arguments, z, Temme�s (1975) algorithm is used to find K�(z). This
involves evaluating a continued fraction. If this evaluation fails to converge, the answer may not
be accurate. For small z, a Neumann series is used to compute K�(z). Upward recurrence of the
K�(z) is always stable.

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 133

Chapter 7: Kelvin Functions

Routines
Evaluates ber�(x) ..BER0 135
Evaluates bei�(x).. BEI0 136
Evaluates ker�(x).. AKER0 137
Evaluates kei�(x) ..AKEI0 138
Evaluates ber��(x) .. BERP0 139
Evaluates bei�(x)..BEIP0 140
Evaluates ker��(x)...AKERP0 141
Evaluates kei��(x) .. AKEIP0 142
Evaluates ber�(x) ..BER1 144
Evaluates bei�(x).. BEI1 145
Evaluates ker�(x).. AKER1 146
Evaluates kei�(x) ..AKEI1 147

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964). The Kelvin
functions are related to the Bessel functions by the following relations.

3 / 4ber bei ()i
v v vx i x J xe �

� �

/ 2 / 4ker kei ()i i
v v vx i x e K xe�� ��

� �

The derivatives of the Kelvin functions are related to the values of the Kelvin functions by the
following:

0 1 12ber ber beix x x� � �

0 1 12bei ber beix x x� � � �

0 1 12ker ker keix x x� � �

0 1 12kei ker keix x x� � � �

134 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

Plots of bern(x), bein(x), kern(x) and kein(x) for n = 0, 1 follow:

Figure 7-1 Plot of bern(x) and bein(x)

Figure 7-2 Plot of kern(x) and kein(x)

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 135

BER0
This function evaluates the Kelvin function of the first kind, ber, of order zero.

Function Return Value
BER0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

ABS(X) must be less than 119.

FORTRAN 90 Interface
Generic: BER0 (X)

Specific: The specific interface names are S_BER0 and D_BER0.

FORTRAN 77 Interface
Single: BER0 (X)

Double: The double precision name is DBER0.

Example
In this example, ber�(0.4) is computed and printed.

 USE BER0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = BER0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BER0(�, F6.3, �) = �, F6.3)
 END

Output
BER0(0.400) = 1.000

136 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

Description

The Kelvin function ber�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in
BSJ0 (page 92). Function BER0 is based on the work of Burgoyne (1963).

BEI0
This function evaluates the Kelvin function of the first kind, bei, of order zero.

Function Return Value
BEI0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

ABS(X) must be less than 119.

FORTRAN 90 Interface
Generic: BEI0 (X)

Specific: The specific interface names are S_BEI0 and D_BEI0.

FORTRAN 77 Interface
Single: BEI0 (X)

Double: The double precision name is DBEI0.

Example
In this example, bei�(0.4) is computed and printed.

 USE BEI0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = BEI0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BEI0(�, F6.3, �) = �, F6.3)
 END

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 137

Output
BEI0(0.400) = 0.040

Description

The Kelvin function bei�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in
BSJ0 (page 92). Function BEI0 is based on the work of Burgoyne (1963).

In BEI0, x must be less than 119.

AKER0
This function evaluates the Kelvin function of the second kind, ker, of order zero.

Function Return Value
AKER0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be nonnegative.

FORTRAN 90 Interface
Generic: AKER0(X)

Specific: The specific interface names are S_AKER0 and D_AKER0.

FORTRAN 77 Interface
Single: AKER0(X)

Double: The double precision name is DKER0.

Example
In this example, ker�(0.4) is computed and printed.

 USE AKER0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = AKER0(X)
! Print the results
 CALL UMACH (2, NOUT)

138 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AKER0(�, F6.3, �) = �, F6.3)
 END

Output
AKER0(0.400) = 1.063

Description

The modified Kelvin function ker�(x) is defined to be �K�(xe�i��). The Bessel function K�(x) is
defined in BSK0 (page 101). Function AKER0 is based on the work of Burgoyne (1963). If x < 0,
then NaN (not a number) is returned. If x � 119, then zero is returned.

AKEI0
This function evaluates the Kelvin function of the second kind, kei, of order zero.

Function Return Value
AKEI0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be nonnegative and less than 119.

FORTRAN 90 Interface
Generic: AKEI0(X)

Specific: The specific interface names are S_AKEI0 and D_AKEI0.

FORTRAN 77 Interface
Single: AKEI0(X)

Double: The double precision name is DKEI0.

Example
In this example, kei�(0.4) is computed and printed.

 USE AKEI0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 139

 VALUE = AKEI0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AKEI0(�, F6.3, �) = �, F6.3)
 END

Output
AKEI0(0.400) = -0.704

Description

The modified Kelvin function kei�(x) is defined to be �K�(xe�i��). The Bessel function K�(x) is
defined in BSK0 (page 101). Function AKEI0 is based on the work of Burgoyne (1963).

In AKEI0, x must satisfy 0 � x < 119. If x < 0, then NaN (not a number) is returned. If x � 119,
then zero is returned.

BERP0
This function evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Function Return Value
BERP0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BERP0 (X)

Specific: The specific interface names are S_BERP0 and D_BERP0.

FORTRAN 77 Interface
Single: BERP0 (X)

Double: The double precision name is DBERP0.

Example
In this example, ber�0(0.6) is computed and printed.

 USE BERP0_INT
 USE UMACH_INT

140 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.6
 VALUE = BERP0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BERP0(�, F6.3, �) = �, F6.3)
 END

Output
BERP0(0.600) = -0.013

Description
The function ber��(x) is defined to be

� �0 berd x
dx

where ber�(x) is a Kelvin function, see BER0 (page 135). Function BERP0 is based on the work
of Burgoyne (1963).

If �x� > 119, then NaN (not a number) is returned.

BEIP0
This function evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Function Return Value
BEIP0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BEIP0 (X)

Specific: The specific interface names are S_BEIP0 and D_BEIP0.

FORTRAN 77 Interface
Single: BEIP0 (X)

Double: The double precision name is DBEIP0.

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 141

Example
In this example, bei��(0.6) is computed and printed.

 USE BEIP0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.6
 VALUE = BEIP0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BEIP0(�, F6.3, �) = �, F6.3)
 END

Output
BEIP0(0.600) = 0.300

Description
The function bei��(x) is defined to be

� �0 beid x
dx

where bei�(x) is a Kelvin function, see BEI0 (page 136). Function BEIP0 is based on the work
of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

AKERP0
This function evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Function Return Value
AKERP0 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be nonnegative.

FORTRAN 90 Interface
Generic: AKERP0 (X)

142 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

Specific: The specific interface names are S_AKERP0 and D_AKERP0.

FORTRAN 77 Interface
Single: AKERP0 (X)

Double: The double precision name is DKERP0.

Example
In this example, ker��(0.6) is computed and printed.

 USE AKERP0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.6
 VALUE = AKERP0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AKERP0(�, F6.3, �) = �, F6.3)
 END

Output
AKERP0(0.600) = -1.457

Description
The function ker��(x) is defined to be

� �0 kerd x
dx

where ker�(x) is a Kelvin function, see AKER0 (page 137). Function AKERP0 is based on the
work of Burgoyne (1963). If x < 0, then NaN (not a number) is returned. If x > 119, then zero is
returned.

AKEIP0
This function evaluates the Kelvin function of the second kind, kei, of order zero.

Function Return Value
AKEIP0 � Function value. (Output)

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 143

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be nonnegative.

FORTRAN 90 Interface
Generic: AKEIP0 (X)

Specific: The specific interface names are S_AKEIP0 and D_AKEIP0.

FORTRAN 77 Interface
Single: AKEIP0 (X)

Double: The double precision name is DKEIP0.

Example
In this example, kei��(0.6) is computed and printed.

 USE AKEIP0_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.6
 VALUE = AKEIP0(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AKEIP0(�, F6.3, �) = �, F6.3)
 END

Output
AKEIP0(0.600) = 0.348

Description
The function kei��(x) is defined to be

� �0 keid x
dx

where kei�(x) is a Kelvin function, see AKEIP0 (page 142). Function AKEIP0 is based on the
work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x > 119, then zero is returned.

144 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

BER1
This function evaluates the Kelvin function of the first kind, ber, of order one.

Function Return Value
BER1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BER1 (X)

Specific: The specific interface names are S_BER1 and D_BER1.

FORTRAN 77 Interface
Single: BER1 (X)

Double: The double precision name is DBER1.

Example
In this example, ber�(0.4) is computed and printed.

 USE BER1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = BER1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BER1(�, F6.3, �) = �, F6.3)
 END

Output
BER1(0.400) = -0.144

Description

The Kelvin function ber�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in
BSJ1 (page 94). Function BER1 is based on the work of Burgoyne (1963).

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 145

If |x| > 119, then NaN (not a number) is returned.

BEI1
This function evaluates the Kelvin function of the first kind, bei, of order one.

Function Return Value
BEI1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BEI1 (X)

Specific: The specific interface names are S_BEI1 and D_BEI1.

FORTRAN 77 Interface
Single: BEI1 (X)

Double: The double precision name is DBEI1.

Example
In this example, bei�(0.4) is computed and printed.

 USE BEI1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = BEI1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BEI1(�, F6.3, �) = �, F6.3)
 END

Output
BEI1(0.400) = 0.139

146 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

Description

The Kelvin function bei�(x) is defined to be �J�(xe��i��). The Bessel function J�(x) is defined in
BSJ1 (page 94). Function BEI1 is based on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

AKER1
This function evaluates the Kelvin function of the second kind, ker, of order one.

Function Return Value
AKER1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be nonnegative.

FORTRAN 90 Interface
Generic: AKER1 (X)

Specific: The specific interface names are S_AKER1 and D_AKER1.

FORTRAN 77 Interface
Single: AKER1 (X)

Double: The double precision name is DKER1.

Example
In this example, ker�(0.4) is computed and printed.

 USE AKER1_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = AKER1(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AKER1(�, F6.3, �) = �, F6.3)
 END

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions � 147

Output
AKER1(0.400) = -1.882

Description

The modified Kelvin function ker�(x) is defined to be e��i���K�(xe�i��). The Bessel function
K�(x) is defined in BSK1 (page 103). Function AKER1 is based on the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x � 119, then zero is returned.

AKEI1
This function evaluates the Kelvin function of the second kind, kei, of order one.

Function Return Value
AKEI1 � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

It must be nonnegative.

FORTRAN 90 Interface
Generic: AKEI1 (X)

Specific: The specific interface names are S_AKEI1 and D_AKEI1.

FORTRAN 77 Interface
Single: AKEI1 (X)

Double: The double precision name is DKEI1.

Example
In this example, kei�(0.4) is computed and printed.

 USE UMACH_INT
 USE AKEI1_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.4
 VALUE = AKEI1(X)
! Print the results

148 � Chapter 7: Kelvin Functions IMSL MATH LIBRARY Special Functions

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AKEI1(�, F6.3, �) = �, F6.3)
 END

Output

AKEI1(0.400) = -1.444

Description

The modified Kelvin function kei�(x) is defined to be e��i���K�(xe�i��). The Bessel function
K�(x) is defined in BSK1 (page 103). Function AKER1 is based on the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x � 119, then zero is returned.

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 149

Chapter 8: Airy Functions

Routines
Evaluates Ai(x)..AI 149
Evaluates Bi(x)..BI 150
Evaluates Ai�(x)..AID 152
Evaluates Bi�(x)..BID 153
Evaluates exponentially scaled Ai(x) ... AIE 154
Evaluates exponentially scaled Bi(x) ... BIE 155
Evaluates exponentially scaled Ai�(x)AIDE 157
Evaluates exponentially scaled Bi�(x)BIDE 158

AI
This function evaluates the Airy function.

Function Return Value
AI � Function value. (Output)

Required Arguments
X � Argument for which the Airy function is desired. (Input)

FORTRAN 90 Interface
Generic: AI (X)

Specific: The specific interface names are S_AI and D_AI.

FORTRAN 77 Interface
Single: AI (X)

Double: The double precision name is DAI.

150 � Chapter 8: Airy Functions IMSL MATH LIBRARY Special Functions

Example
In this example, Ai(�4.9) is computed and printed.

 USE AI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = -4.9
 VALUE = AI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AI(�, F6.3, �) = �, F6.3)
 END

Output
AI(-4.900) = 0.375

Comments
Informational error
Type Code

2 1 The function underflows because X is greater than XMAX, where
 XMAX = (�3/2 ln(AMACH(1)))���.

Description
The Airy function Ai(x) is defined to be

� � 3 3 / 2
1/ 320

1 1 2Ai cos
3 33

xx xt t dt K x
� �

� � � � �
� � �� � � �

� � � �
�

The Bessel function K�(x) is defined in BSKS (page 120).

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, the answer will be less
accurate than half precision. Here, � = AMACH(4) is the machine precision. Finally, x should be
less than x� so the answer does not underflow. Very approximately, x� = {�1.5 ln s}���,
where s = AMACH(1), the smallest representable positive number. If underflows are a problem
for large x, then the exponentially scaled routine AIE (page 154) should be used.

BI
This function evaluates the Airy function of the second kind.

Function Return Value
BI � Function value. (Output)

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 151

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BI (X)

Specific: The specific interface names are S_BI and D_BI.

FORTRAN 77 Interface
Single: BI (X)

Double: The double precision name is DBI.

Example
In this example, Bi(�4.9) is computed and printed.

 USE BI_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = -4.9
 VALUE = BI(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BI(�, F6.3, �) = �, F6.3)
 END

Output
BI(-4.900) = -0.058

Description
The Airy function of the second kind Bi(x) is defined to be

� � 3 3

0 0

1 1 1 1Bi exp sin
3 3

x xt t dt xt t dt
� �

� �� � � �
� � � �� � � �

� 	 � 	
� �

It can also be expressed in terms of modified Bessel functions of the first kind, I�(x), and Bessel
functions of the first kind, J�(x) (see BSIS, page 117, and BSJS, page 113):

� � 3 / 2 3 / 2
1/ 3 1/ 3

2 2Bi for 0
3 3 3
xx I x I x x

�

� �� � � �
� � �� 	 � 	
 �

� � � �

152 � Chapter 8: Airy Functions IMSL MATH LIBRARY Special Functions

and

� �
3 / 2 3 / 2

1/ 3 1/ 3
2 2Bi for 0
3 33

xx J x J x x
�

	
� � � �
� � � �� � � � �

� � � �� �

Let � = AMACH(4), the machine precision. If x < �1.31�����, then the answer will have no
precision. If x < �1.31�����, the answer will be less accurate than half precision. In addition, x
should not be so large that exp[(2/3)x���] overflows. If overflows are a problem, consider using
the exponentially scaled form of the Airy function of the second kind, BIE (page 155), instead.

AID
This function evaluates the derivative of the Airy function.

Function Return Value
AID � Function value. (Output)

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: AID (X)

Specific: The specific interface names are S_AID and D_AID.

FORTRAN 77 Interface
Single: AID (X)

Double: The double precision name is DAID.

Example
In this example, Ai�(�4.9) is computed and printed.

 USE AID_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = -4.9
 VALUE = AID(X)

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 153

! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AID(�, F6.3, �) = �, F6.3)
 END

Output
AID(-4.900) = 0.147

Comments
Informational error
Type Code

 2 1 The function underflows because X is greater than XMAX,

where XMAX = �3/2 ln(AMACH(1)).

Description
The function Ai�(x) is defined to be the derivative of the Airy function, Ai(x) (see AI, page 149).

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, the answer will be less
accurate than half precision. Here, � = AMACH(4) is the machine precision. Finally, x should be
less than x� so that the answer does not underflow. Very approximately, x� = {�1.5 ln s},
where s = AMACH(1), the smallest representable positive number. If underflows are a problem for
large x, then the exponentially scaled routine AIDE (page 157) should be used.

BID
This function evaluates the derivative of the Airy function of the second kind.

Function Return Value
BID � Function value. (Output)

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BID (X)

Specific: The specific interface names are S_BID and D_BID.

FORTRAN 77 Interface
Single: BID (X)

154 � Chapter 8: Airy Functions IMSL MATH LIBRARY Special Functions

Double: The double precision name is DBID.

Example
In this example, Bi�(�4.9) is computed and printed.

 USE BID_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = -4.9
 VALUE = BID(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BID(�, F6.3, �) = �, F6.3)
 END

Output
BID(-4.900) = 0.827

Description
The function Bi�(x) is defined to be the derivative of the Airy function of the second kind, Bi(x)
(see BI, page 150).

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, the answer will be less
accurate than half precision. In addition, x should not be so large that exp[(2/3)x���] overflows. If
overflows are a problem, consider using BIDE (page 158) instead. Here, � = AMACH(4) is the
machine precision.

AIE
This function evaluates the exponentially scaled Airy function.

Function Return Value
AIE � Function value. (Output)

The Airy function for negative arguments and the exponentially scaled Airy function,
e 	Ai(X), for positive arguments where

2 3/2
3 X� �

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 155

FORTRAN 90 Interface
Generic: AIE (X)

Specific: The specific interface names are S_AIE and D_AIE.

FORTRAN 77 Interface
Single: AIE (X)

Double: The double precision name is DAIE.

Example
In this example, AIE(0.49) is computed and printed.

 USE AIE_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.49
 VALUE = AIE(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AIE(�, F6.3, �) = �, F6.3)
 END

Output
AIE(0.490) = 0.294

Description
The exponentially scaled Airy function is defined to be

� �
� �

� � � �
3/ 22 / 3

Ai if 0

Ai if 0x

x x
x

e x x

� ��
� �

���

AIE

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will
be less accurate than half precision. Here, � = AMACH(4) is the machine precision.

BIE
This function evaluates the exponentially scaled Airy function of the second kind.

156 � Chapter 8: Airy Functions IMSL MATH LIBRARY Special Functions

Function Return Value
BIE � Function value. (Output)

The Airy function of the second kind for negative arguments and the exponentially
scaled Airy function of the second kind, e�Bi(X), for positive arguments where

3/ 22
3 X� � �

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BIE (X)

Specific: The specific interface names are S_BIE and D_BIE.

FORTRAN 77 Interface
Single: BIE (X)

Double: The double precision name is DBIE.

Example
In this example, BIE(0.49) is computed and printed.

 USE BIE_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.49
 VALUE = BIE(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BIE(�, F6.3, �) = �, F6.3)
 END

Output
BIE(0.490) = 0.675

Description
The exponentially scaled Airy function of the second kind is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 157

� �
� �
� � � �

3/ 22 / 3

if 0Bi

Bi if 0
x

xx
x

e x x
�

� ��
� �
� ��

BIE

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will
be less accurate than half precision. Here, � = AMACH(4) is the machine precision.

AIDE
This function evaluates the exponentially scaled derivative of the Airy function.

Function Return Value
AIDE � Function value. (Output)

The derivative of the Airy function for negative arguments and the exponentially scaled
derivative of the Airy function, e�Ai�(X), for positive arguments where

3/22
3 X� ��

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: AIDE (X)

Specific: The specific interface names are S_AIDE and D_AIDE.

FORTRAN 77 Interface
Single: AIDE (X)

Double: The double precision name is DAIDE.

Example
In this example, AIDE(0.49) is computed and printed.

 USE AIDE_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.49
 VALUE = AIDE(X)
! Print the results

158 � Chapter 8: Airy Functions IMSL MATH LIBRARY Special Functions

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� AIDE(�, F6.3, �) = �, F6.3)
 END

Output
AIDE(0.490) = -0.284

Description
The exponentially scaled derivative of the Airy function is defined to be

� �
� �

� � � �
3/ 22 / 3

Ai if 0

Ai if 0x

x x
x

e x x

� � ��
� �

� ���

AIDE

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will
be less accurate than half precision. Here, � = AMACH(4) is the machine precision.

BIDE
This function evaluates the exponentially scaled derivative of the Airy function of the second kind.

Function Return Value
BIDE � Function value. (Output)

The derivative of the Airy function of the second kind for negative arguments and the
exponentially scaled derivative of the Airy function of the second kind, e�Bi�(X), for
positive arguments where

2 3 / 2
3 X� ��

Required Arguments
X � Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface
Generic: BIDE (X)

Specific: The specific interface names are S_BIDE and D_BIDE.

FORTRAN 77 Interface
Single: BIDE (X)

Double: The double precision name is DBIDE.

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions � 159

Example
In this example, BIDE(0.49) is computed and printed.

 USE BIDE_INT
 USE UMACH_INT

! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.49
 VALUE = BIDE(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� BIDE(�, F6.3, �) = �, F6.3)
 END

Output
BIDE(0.490) = 0.430

Description
The exponentially scaled derivative of the Airy function of the second kind is defined to be

� �
� �

� � � �
3/ 22 / 3

Bi if 0

Bi if 0x

x x
x

e x x�

� � ��
� �

� ���

BIDE

If x < �1.31�����, then the answer will have no precision. If x < �1.31�����, then the answer will
be less accurate than half precision. Here, � = AMACH(4) is the machine precision.

160 � Chapter 8: Airy Functions IMSL MATH LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 161

Chapter 9: Elliptic Integrals

Routines
Evaluates the complete elliptic integral of the first kind, K(x) ... ELK 163
Evaluates the complete elliptic integral of the second kind,
E(x) ... ELE 165
Evaluates Carlson�s elliptic integral of the first kind,
RF(x, y, z) ..ELRF 166
Evaluates Carlson�s elliptic integral of the second kind,
RD(x, y, z)... ELRD 167
Evaluates Carlson�s elliptic integral of the third kind,
RJ(x, y, z) .. ELRJ 169
Evaluates a special case of Carlson�s elliptic integral,
RC(x, y, z)... ELRC 170

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964) and Carlson
(1979).

The complete elliptic integral of the first kind is

� � � �
1/ 2/ 2 2

0
1 sinK m m d

�

� �
�

� ��

and the complete elliptic integral of the second kind is

� � � �
1/ 2/ 2 2

0
1 sinE m m d

�

� �� ��

Instead of the parameter m, the modular angle
 is sometimes used with m = sin�
. Also used is
the modulus k with k� = m.

� � � �

� � � �

/ 2 2 2 1/ 2

0

2 2 2

1 sin

10,1 , 1 0, 1 , 1
3F D

E k k d

R k k R k

�

� �� �

� � � �

�

162 � Chapter 9: Elliptic Integrals IMSL MATH LIBRARY Special Functions

Carlson Elliptic Integrals
The Carlson elliptic integrals are defined by Carlson (1979) as follows:

� �
� �� �� �

1/ 20

1, ,
2F

dtR x y z
t x t y t z

�

�
� � �� �� �

�

� �
� �� �

1/ 20 2

1,
2C

dtR x y
t x t y

�

�
� �� �
� �

�

� �
� �� �� �� �

1/ 20 2

3, , ,
2J

dtR x y z
t x t y t z t

�

�

�

�
� �� � � �
� �

�

� �
� �� �� �

1/ 20 3

3, ,
2D

dtR x y z
t x t y t z

�

�
� �� � �
� �

�

The standard Legendre elliptic integrals can be written in terms of the Carlson functions as follows
(these relations are from Carlson (1979)):

� � � �

� � � �

1/ 2
2 2

0

2 2 2

, 1 sin

sin cos , 1 sin , 1F

F k k d

R k

�

� � �

� � �

�

� �

� �

�

� � � �

� � � � � � � �

1/ 2
2 2

0

32 2 2 2 2 2 2

, 1 sin

1sin cos , 1 sin , 1 sin cos , 1 sin , 1
3F D

E k k d

R k k R k

�

� � �

� � � � � �

� �

� � � �

�

� � � � � �

� � � � � � � �

1 1/ 22 2 2

0

32 2 2 2 2 2 2 2

, , 1 sin 1 sin

sin cos , 1 sin , 1 sin cos , 1 sin , 1 sin
3F D

k n n k d

nR k k R k n

�

� � � �

� � � � � � �

�

�

� � � �

� � � � �

�

� � � �

� � � �

1/ 22 2 2

0

3 2 2 2

, , sin 1 sin

1 sin cos , 1 sin , 1
3 D

D k n k d

R k

�

� � � �

� � �

�

� �

� �

�

� � � �

� �

/ 2 2 2 1/ 2

0

2

1 sin

0, 1 , 1F

K k k d

R k

�

� �
�

� �

� �

�

� � � �

� � � �

1/ 2/ 2 2 2

0

2 2 2

1 sin

10, 1 , 1 0,1 , 1
3F D

E k k d

R k k R k

�

� �� �

� � � �

�

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 163

The function RC(x, y) is related to inverse trigonometric and inverse hyperbolic functions.

� �

� �

� �

� �

� �

� �

� �

� �

1 2

1 2

1 2 2

1 2 2

1 2

1 2

1 2 2

1

1ln 1 , 0
2

sin 1 ,1 1 1

sinh 1 ,1

cos 1 ,1 0 1

cosh 1 ,1 1

tan 1,1

tanh 1,1 1 1

cot , 1 0

coth

c

c

c

c

c

c

c

c

c

xx x R x x

x xR x x

x xR x x

x x R x x

x x R x x

x xR x x

x xR x x

x R x x x

x R x

�

�

�

�

�

�

�

�

� � �� �
� � � � 	
 ��

� �� �

� � � � �

� � �	 � �	

� � � �

� � � � 	

� � �	 � � 	

� � � � �

� � � � 	

� � �2 2, 1 1x x� � � 	

ELK
This function evaluates the complete elliptic integral of the kind K(x).

Function Return Value
ELK � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

X must be greater than or equal to 0 and less than 1.

FORTRAN 90 Interface
Generic: ELK (X)

Specific: The specific interface names are S_ELK and D_ELK.

FORTRAN 77 Interface
Single: ELK (X)

Double: The double precision name is DELK.

Example
In this example, K(0) is computed and printed.

164 � Chapter 9: Elliptic Integrals IMSL MATH LIBRARY Special Functions

 USE ELK_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.0
 VALUE = ELK(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ELK(�, F6.3, �) = �, F6.3)
 END

Output
ELK(0.000) = 1.571

Description
The complete elliptic integral of the first kind is defined to be

� �
/ 2

1/ 20 2
for 0 1

1 sin

dK x x
x

� �

�

� � �
� ��� �

�

The argument x must satisfy 0 � x < 1; otherwise, ELK is set to b = AMACH(2), the largest
representable floating-point number.

The function K(x) is computed using the routine ELRF (page 166) and the relation
K(x) = RF(0, 1 � x, 1).

Figure 9-1 Plot of K(x) and E(x)

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 165

ELE
This function evaluates the complete elliptic integral of the second kind E(x).

Function Return Value
ELE � Function value. (Output)

Required Arguments
X � Argument for which the function value is desired. (Input)

X must be greater than or equal to 0 and less than or equal to 1.

FORTRAN 90 Interface
Generic: ELE (X)

Specific: The specific interface names are S_ELE and D_ELE.

FORTRAN 77 Interface
Single: ELE (X)

Double: The double precision name is DELE.

Example
In this example, E(0.33) is computed and printed.

 USE ELE_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.33
 VALUE = ELE(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (� ELE(�, F6.3, �) = �, F6.3)
 END

Output
ELE(0.330) = 1.432

Description
The complete elliptic integral of the second kind is defined to be

166 � Chapter 9: Elliptic Integrals IMSL MATH LIBRARY Special Functions

� �
1/ 2/ 2 2

0
1 sin for 0 1E x x d x

�

� �� �� � � �� ��

The argument x must satisfy 0 � x < 1; otherwise, ELE is set to b = AMACH(2), the largest
representable floating-point number.

The function E(x) is computed using the routines ELRF, page 166, and ELRD, page 167. The
computation is done using the relation

� � � � � �0, 1 , 1 0, 1 , 1
3F D
xE x R x R x� � � �

For a plot of E(x), see Figure 9.1 on page 164.

ELRF
This function evaluates Carlson�s incomplete elliptic integral of the first kind RF(X, Y, Z).

Function Return Value
ELRF � Function value. (Output)

Required Arguments
X � First variable of the incomplete elliptic integral. (Input)

It must be nonnegative

Y � Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z � Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: ELRF(X, Y, Z)

Specific: The specific interface names are S_ELRF and D_ELRF.

FORTRAN 77 Interface
Single: ELRF(X, Y, Z)

Double: The double precision name is DELRF.

Example
In this example, RF(0, 1, 2) is computed and printed.

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 167

 USE ELRF_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X, Y, Z
! Compute
 X = 0.0
 Y = 1.0
 Z = 2.0
 VALUE = ELRF(X, Y, Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (� ELRF(�, F6.3, �,�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
ELRF(0.000, 1.000, 2.000) = 1.311

Description
The Carlson�s complete elliptic integral of the first kind is defined to be

� �
� �� �� �

1/ 20

1, ,
2F

dtR x y z
t x t y t z

�

�
� � �� �� �

�

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and
y + z must be greater than or equal to 5s. Should any of these conditions fail, ELRF is set to b.
Here, b = AMACH(2) is the largest and s = AMACH(1) is the smallest representable floating-point
number.

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

ELRD
This function evaluates Carlson�s incomplete elliptic integral of the second kind RD(X, Y, Z).

Function Return Value
ELRD � Function value. (Output)

Required Arguments
X � First variable of the incomplete elliptic integral. (Input)

It must be nonnegative.

Y � Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

168 � Chapter 9: Elliptic Integrals IMSL MATH LIBRARY Special Functions

Z � Third variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface
Generic: ELRD(X, Y, Z)

Specific: The specific interface names are S_ELRD and D_ELRD.

FORTRAN 77 Interface
Single: ELRD(X, Y, Z)

Double: The double precision name is DELRD.

Example
In this example, RD(0, 2, 1) is computed and printed.

 USE ELRD_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X, Y, Z
! Compute
 X = 0.0
 Y = 2.0
 Z = 1.0
 VALUE = ELRD(X, Y, Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (� ELRD(�, F6.3, �,�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
ELRD(0.000, 2.000, 1.000) = 1.797

Description
The Carlson�s complete elliptic integral of the second kind is defined to be

� �
� �� � � �

1/ 20 3

3, ,
2D

dtR x y z
t x t y t z

�

�
� �� � �
� �

�

The arguments must be nonnegative and less than or equal to 0.69(�ln �)��� s���� where
� = AMACH(4) is the machine precision, s = AMACH(1) is the smallest representable positive
number. Furthermore, x + y and z must be greater than max{3s���, 3/b���}, where b = AMACH(2) is
the largest floating-point number. If any of these conditions are false, then ELRD is set to b.

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 169

The function ELRD is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

ELRJ
This function evaluates Carlson�s incomplete elliptic integral of the third kind RJ(X, Y, Z, RHO)

Function Return Value
ELRJ � Function value. (Output)

Required Arguments
X � First variable of the incomplete elliptic integral. (Input)

It must be nonnegative.

Y � Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z � Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

RHO � Fourth variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface
Generic: ELRJ(X, Y, Z, RHO)

Specific: The specific interface names are S_ELRJ and D_ELRJ.

FORTRAN 77 Interface
Single: ELRJ(X, Y, Z, RHO)

Double: The double precision name is DELRJ.

Example
In this example, RJ(2, 3, 4, 5) is computed and printed.

 USE ELRJ_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL RHO, VALUE, X, Y, Z
! Compute
 X = 2.0

170 � Chapter 9: Elliptic Integrals IMSL MATH LIBRARY Special Functions

 Y = 3.0
 Z = 4.0
 RHO = 5.0
 VALUE = ELRJ(X, Y, Z, RHO)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, RHO, VALUE
99999 FORMAT (� ELRJ(�, F6.3, �,�, F6.3, �,�, F6.3, �,�, F6.3, &
 �) = �, F6.3)
 END

Output
ELRJ(2.000, 3.000, 4.000, 5.000) = 0.143

Description
The Carlson�s complete elliptic integral of the third kind is defined to be

� �
� � � �� �� �

1/ 20 2

3, , ,
2J

dtR x y z
t x t y t z t

�

�

�

�
� �� � � �
� �

�

The arguments must be nonnegative. In addition, x + y, x + z, y + z and � must be greater than or
equal to (5s)��� and less than or equal to .3(b/5)���, where s = AMACH(1) is the smallest
representable floating-point number. Should any of these conditions fail, ELRF is set to
b = AMACH(2), the largest floating-point number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

ELRC
This function evaluates an elementary integral from which inverse circular functions, logarithms
and inverse hyperbolic functions can be computed.

Function Return Value
ELRC � Function value. (Output)

Required Arguments
X � First variable of the incomplete elliptic integral. (Input)

It must be nonnegative and satisfy the conditions given in Comments.

Y � Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

FORTRAN 90 Interface
Generic: ELRC(X, Y)

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals � 171

Specific: The specific interface names are S_ELRC and D_ELRC.

FORTRAN 77 Interface
Single: ELRC(X, Y)

Double: The double precision name is DELRC.

Example
In this example, RC(2.25, 2.0) is computed and printed.

 USE ELRC_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X, Y
! Compute
 X = 0.0
 Y = 1.0
 VALUE = ELRC(X, Y)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, VALUE
99999 FORMAT (� ELRC(�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
ELRC(0.000, 1.000) = 1.571

Comments
The sum X + Y must be greater than or equal to ARGMIN and both X and Y must be less than or
equal to ARGMAX. ARGMIN = s * 5 and ARGMAX = b/5, where s is the machine minimum
(AMACH(1)) and b is the machine maximum (AMACH(2)).

Description
The special case of Carlson�s complete elliptic integral of the first kind is defined to be

� �
� �� �

1/ 20 2

1,
2C

dtR x y
t x t y

�

�
� �� �
� �

�

The argument x must be nonnegative, y must be positive, and x + y must be less than or equal to
b/5 and greater than or equal to 5s. If any of these conditions are false, then ELRC is set to b.
Here, b = AMACH(2) is the largest and s = AMACH(1) is the smallest representable floating-point
number.

The function ELRC is based on the code by Carlson and Notis (1981) and the work of Carlson
(1979).

172 � Chapter 9: Elliptic Integrals IMSL MATH LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions � 173

Chapter 10: Elliptic and Related
Functions

Routines
10.1. Weierstrass Elliptic and Related Functions

Lemninscatic case ...CWPL 173
Lemninscatic case derivative..CWPLD 175
Equianharmonic case ...CWPQ 176
Equianharmonic case derivative.. CWPQD 177

10.2. Jacobi Elliptic Functions
Jacobi function sn(x, m) (real argument)EJSN 178
Jacobi function cn(x, m) (real argument)EJCN 180
Jacobi function dn(x, m) (real argument)................................EJDN 182

Usage Notes
Elliptic functions are doubly periodic, single-valued complex functions of a single variable that are
analytic, except at a finite number of poles. Because of the periodicity, we need consider only the
fundamental period parallelogram. The irreducible number of poles, counting multiplicities, is the
order of the elliptic function. The simplest, non-trivial, elliptic functions are of order two.

The Weierstrass elliptic functions, �(z, �, ��) have a double pole at z = 0 and so are of order two.
Here, 2� and 2�� are the periods.

The Jacobi elliptic functions each have two simple poles and so are also of order two. The period
of the functions is as follows:

Function Periods
sn(x, m) 4K(m) 2iK�(m)
cn(x, m) 4K(m) 4iK�(m)
dn(x, m) 2K(m) 4iK�(m)

The function K(m) is the complete elliptic integral, see ELK (page 163), and K�(m) = K(1 � m).

CWPL
This function evaluates the Weierstrass� � function in the lemniscatic case for complex argument
with unit period parallelogram.

174 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

Function Return Value
CWPL � Complex function value. (Output)

Required Arguments
Z � Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPL (Z)

Specific: The specific interface names are C_CWPL and Z_CWPL.

FORTRAN 77 Interface
Complex: CWPL (Z)

Double complex: The double complex name is ZWPL.

Example
In this example, �(0.25 + 0.25i) is computed and printed.

 USE CWPL_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.25, 0.25)
 VALUE = CWPL(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CWPL(�, F6.3, �,�, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
CWPL(0.250, 0.250) = (0.000,-6.875)

Description
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with
periods 2� and 2�� and a double pole at z = 0. CWPL(Z) computes �(z | �, ��) with 2� = 1 and
2�� = i.

The input argument is first reduced to the fundamental parallelogram of all z satisfying
 �1/2 � �z � 1/2 and �1/2 � 	z � 1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of
CWPL. If the argument is a lattice point, then b = AMACH(2) , the largest floating-point number, is

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions � 175

returned. If the argument has modulus greater than 10���, then NaN (not a number) is returned.
Here, � = AMACH(4) is the machine precision.

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

CWPLD
This function evaluates the first derivative of the Weierstrass� � function in the lemniscatic case
for complex argument with unit period parallelogram.

Function Return Value
CWPLD � Complex function value. (Output)

Required Arguments
Z � Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPLD (Z)

Specific: The specific interface names are C_CWPLD and Z_CWPLD.

FORTRAN 77 Interface
Complex: CWPLD (Z)

Double complex: The double complex name is ZWPLD.

Example
In this example, �(0.25 + 0.25i) is computed and printed.

 USE CWPLD_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.25, 0.25)
 VALUE = CWPLD(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CWPLD(�, F6.3, �,�, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
CWPLD(0.250, 0.250) = (36.054,36.054)

176 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

Description
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with
periods 2� and 2�� and a double pole at z = 0. CWPLD(Z) computes the derivative of �(z | �, ��)
with 2� = 1 and 2�� = i. CWPL, page 173, computes �(z | �, ��).

The input argument is first reduced to the fundamental parallelogram of all z satisfying
�1/2 � �z � 1/2 and �1/2 � 	z � 1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of
CWPL. If the argument is a lattice point, then b = AMACH(2), the largest floating-point number, is
returned.

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

CWPQ
This function evaluates the Weierstrass� � function in the equianharmonic case for complex
argument with unit period parallelogram.

Function Return Value
CWPQ � Complex function value. (Output)

Required Arguments
Z � Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPQ (Z)

Specific: The specific interface names are C_CWPQ and Z_CWPQ.

FORTRAN 77 Interface
Complex: CWPQ (Z)

Double complex: The double complex name is ZWPQ.

Example
In this example, �(0.25 + 0.14437567i) is computed and printed.

 USE CWPQ_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.25, 0.14437567)
 VALUE = CWPQ(Z)
! Print the results

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions � 177

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CWPQ(�, F6.3, �,�, F6.3, �) = (�, &
 F7.3, �,�, F7.3, �)�)
 END

Output
CWPQ(0.250, 0.144) = (5.895,-10.216)

Description
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with
periods 2� and 2�� and a double pole at z = 0. CWPQ(Z) computes �(z | �, ��) with

4 1 3 and 4 1 3i i� � �� � � �

The input argument is first reduced to the fundamental parallelogram of all z satisfying

1/ 2 1/ 2 and 3 / 4 3 / 4z z� � � � � � � �

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

� � � �1 3 1 3z m i n i� � � �

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest
floating-point number, is returned. If the argument has modulus greater than 10���, then NaN
(not a number) is returned. Here, � = AMACH(4) is the machine precision.

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

CWPQD
This function evaluates the first derivative of the Weierstrass� � function in the equianharmonic
case for complex argument with unit period parallelogram.

Function Return Value
CWPQD � Complex function value. (Output)

Required Arguments
Z � Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPQD (Z)

Specific: The specific interface names are C_CWPQD and Z_CWPQD.

178 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Complex: CWPQD (Z)

Double complex: The double complex name is ZWPQD.

Example
In this example, �(0.25 + 0.14437567i) is computed and printed.

 USE CWPQD_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 COMPLEX VALUE, Z
! Compute
 Z = (0.25, 0.14437567)
 VALUE = CWPQD(Z)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (� CWPQD(�, F6.3, �,�, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
CWPQD(0.250, 0.144) = (0.028,85.934)

Description
The Weierstrass� � function, �(z) = �(z | �, ��), is an elliptic function of order two with
periods 2� and 2�� and a double pole at z = 0. CWPQD(Z) computes the derivative of �(z | �, ��)
with

4 1 3 and 4 1 3i i� � �� � � �

CWPQ, page 176, computes �(z | �, ��).

The input argument is first reduced to the fundamental parallelogram of all z satisfying

1/ 2 1/ 2 and 3 / 4 3 / 4z z� � � � � � � �

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

� � � �1 3 1 3z m i n i� � � �

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest
floating-point number, is returned.

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

EJSN
This function evaluates the Jacobi elliptic function sn(x, m).

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions � 179

Function Return Value
EJSN � Real or complex function value. (Output)

Required Arguments
X � Real or complex argument for which the function value is desired. (Input)

AM � Parameter of the elliptic function (m = k�). (Input)

FORTRAN 90 Interface
Generic: EJSN(X, AM)

Specific: The specific interface names are S_EJSN, D_EJSN, C_EJSN, and Z_EJSN

FORTRAN 77 Interface
Single: EJSN(X, AM)

Double: The double precision name is DEJSN.

Complex: The complex name is CEJSN.

Double Complex: The double complex name is ZEJSN.

Example
In this example, sn(1.5, 0.5) is computed and printed.

 USE EJSN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL AM, VALUE, X
! Compute
 AM = 0.5
 X = 1.5
 VALUE = EJSN(X, AM)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (� EJSN(�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
EJSN(1.500, 0.500) = 0.968

Comments
Informational errors
Type Code

 3 2 The result is accurate to less than one half precision because |X| is too large.

180 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

 3 2 The result is accurate to less than one half precision because |REAL (Z)| is
 too large.

 3 3 The result is accurate to less than one half precision because |AIMAG (Z)| is
 too large.

 3 5 Landen transform did not converge. Result may not be accurate. This
 should never occur.

Description
The Jacobi elliptic function sn(x, m) = sin
, where the amplitude
 is defined by the following:

� �
1

20 21 sin

dx
m

� �

�

�

�

�

The function sn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is
applied until the parameter is small. The small parameter approximation is then applied.

Additional Example
In this example, sn(1.5 + 0.3i, 0.5) is computed and printed.

 USE EJSN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL AM
 COMPLEX VALUE, Z
! Compute
 Z = (1.5, 0.3)
 AM = 0.5
 VALUE = EJSN(Z, AM)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (� EJSN((�, F6.3, �,�, F6.3, �), �, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
EJSN((1.500, 0.300), 0.500) = (0.993, 0.054)

EJCN
This function evaluates the Jacobi elliptic function cn(x, m).

Function Return Value
EJCN � Real or complex function value. (Output)

Required Arguments
X � Real or complex argument for which the function value is desired. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions � 181

AM � Parameter of the elliptic function (m = k2). (Input)

FORTRAN 90 Interface
Generic: EJCN(X, AM)

Specific: The specific interface names are S_EJCN, D_EJCN, C_EJCN, and Z_EJCN.

FORTRAN 77 Interface
Single: EJCN(X, AM)

Double: The double precision name is DEJCN.

Complex: The complex name is CEJCN.

Double Complex: The double complex name is ZEJCN.

Example
In this example, cn(1.5, 0.5) is computed and printed.

 USE EJCN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL AM, VALUE, X
! Compute
 AM = 0.5
 X = 1.5
 VALUE = EJCN(X, AM)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (� EJCN(�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
EJCN(1.500, 0.500) = 0.250

Comments
Informational errors
Type Code

 3 2 The result is accurate to less than one half precision because |X| is too large.

 3 2 The result is accurate to less than one half precision because |REAL (Z)| is
 too large.

 3 3 The result is accurate to less than one half precision because |AIMAG (Z)| is
 too large.

 3 5 Landen transform did not converge. Result may not be accurate. This
 should never occur.

182 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

Description
The Jacobi elliptic function cn(x, m) = cos
, where the amplitude
 is defined by the following:

� �
1

20 21 sin

dx
m

� �

�

�

�

�

The function cn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that
the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is
applied until the parameter is small. The small parameter approximation is then applied.

Additional Example
In this example, cn(1.5 + 0.3i, 0.5) is computed and printed.

 USE EJCN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL AM
 COMPLEX VALUE, Z
! Compute
 Z = (1.5, 0.3)
 AM = 0.5
 VALUE = EJCN(Z, AM)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (� EJCN((�, F6.3, �,�, F6.3, �), �, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
EJCN((1.500, 0.300), 0.500) = (0.251,-0.212)

EJDN
This function evaluates the Jacobi elliptic function dn(x, m).

Function Return Value
EJDN � Real or complex function value. (Output)

Required Arguments
X � Real or complex argument for which the function value is desired. (Input)

AM � Parameter of the elliptic function (m = k�). (Input)

FORTRAN 90 Interface
Generic: EJDN(X, AM)

Specific: The specific interface names are S_EJDN, D_EJDN, C_EJDN, and Z_EJDN.

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions � 183

FORTRAN 77 Interface
Single: EJDN(X, AM)

Double: The double precision name is DEJDN.

Complex: The complex precision name is CEJDN.

Double Complex: The double complex precision name is ZEJDN.

Example
In this example, dn(1.5, 0.5) is computed and printed.

 USE EJDN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL AM, VALUE, X
! Compute
 AM = 0.5
 X = 1.5
 VALUE = EJDN(X, AM)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (� EJDN(�, F6.3, �,�, F6.3, �) = �, F6.3)
 END

Output
EJDN(1.500, 0.500) = 0.729

Comments
Informational errors
Type Code

 3 2 The result is accurate to less than one half precision because |X| is too large.

 3 2 The result is accurate to less than one half precision because |REAL (Z)| is
 too large.

 3 3 The result is accurate to less than one half precision because |AIMAG (Z)| is
 too large.

 3 5 Landen transform did not converge. Result may not be accurate. This
 should never occur.

Description
The Jacobi elliptic function dn(x, m) = (1 � m sin2
) 1

2 , where the amplitude
 is defined by the
following:

� �
1

20 21 sin

dx
m

� �

�

�

�

�

184 � Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

The function dn(x, m) is computed by first applying, if necessary, a Jacobi transformation so
that the parameter, m, is between zero and one. Then, a descending Landen (Gauss) transform is
applied until the parameter is small. The small parameter approximation is then applied.

Additional Example
In this example, dn(1.5 + 0.3i, 0.5) is computed and printed.

 USE EJDN_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL AM
 COMPLEX VALUE, Z
! Compute
 Z = (1.5, 0.3)
 AM = 0.5
 VALUE = EJDN(Z, AM)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (� EJDN((�, F6.3, �,�, F6.3, �), �, F6.3, �) = (�, &
 F6.3, �,�, F6.3, �)�)
 END

Output
EJDN((1.500, 0.300), 0.500) = (0.714,-0.037)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 185

Chapter 11: Probability Distribution
Functions and Inverses

Routines
11.1. Discrete Random Variables: Distribution Functions and Probability

Functions
Binomial distribution function .. BINDF 190
Binomial probability...BINPR 191
Hypergeometric distribution functionHYPDF 194
Hypergeometric probability ..HYPPR 196
Poisson distribution function ...POIDF 197
Poisson probability..POIPR 199

11.2. Continuous Random Variables: Distribution Functions and Their
Inverses
Kolmogorov-Smirnov one-sided statistic
distribution function..AKS1DF 201
Kolmogorov-Smirnov two-sided statistic
distribution function..AKS2DF 204
Normal (Gaussian) distribution functionANORDF 206
Inverse of the normal distribution function.........................ANORIN 208
Beta distribution function ... BETDF 209
Inverse of the beta distribution function................................ BETIN 212
Bivariate normal distribution function...................................BNRDF 213
Chi-squared distribution function ..CHIDF 215
Inverse of the chi-squared distribution function CHIIN 217
Noncentral chi-squared distribution functionCSNDF 219
F distribution function..FDF 222
Inverse of the F distribution function.. FIN 223
Gamma distribution function ...GAMDF 225
Student’s t distribution function...TDF 227
Inverse of the Student’s t distribution function........................... TIN 229
Noncentral Student’s t distribution function TNDF 231

11.3. General Continuous Random Variables
Distribution function given ordinates of densityGCDF 233
Inverse of distribution function given ordinates of density......GCIN 236

186 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Usage Notes
Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz
(1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the routines in this chapter are
written for standard forms of statistical distributions. Hence, the number of parameters for any
given distribution may be fewer than the number often associated with the distribution. For
example, while a gamma distribution is often characterized by two parameters (or even a third,
“location”), there is only one parameter that is necessary, the “shape.” The “scale” parameter can
be used to scale the variable to the standard gamma distribution. For another example, the
functions relating to the normal distribution, ANORDF (page 206) and ANORIN (page 208), are for a
normal distribution with mean equal to zero and variance equal to one. For other means and
variances, it is very easy for the user to standardize the variables by subtracting the mean and
dividing by the square root of the variance.

The distribution function for the (real, single-valued) random variable X is the function F defined
for all real x by

F(x) = Prob(X � x)

where Prob(�) denotes the probability of an event. The distribution function is often called the
cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than
the left endpoint and 1 for values greater than the right endpoint. The routines in this chapter
return the correct values for the distribution functions when values outside of the range of the
random variable are input, but warning error conditions are set in these cases.

Discrete Random Variables
For discrete distributions, the function giving the probability that the random variable takes on
specific values is called the probability function, defined by

p(x) = Prob(X = x)

The “PR” routines in this chapter evaluate probability functions.

The CDF for a discrete random variable is

� � � �
A

F x p k��

where A is the set such that k � x. The “DF” routines in this chapter evaluate cumulative
distributions functions. Since the distribution function is a step function, its inverse does not exist
uniquely.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 187

Figure 11-1 Discrete Random Variable

In the plot above, a routine like BINPR (page 191) in this chapter evaluates the individual
probability, given X. A routine like BINDF (page 190) would evaluate the sum of the probabilities
up to and including the probability at X.

Continuous Distributions
For continuous distributions, a probability function, as defined above, would not be useful because
the probability of any given point is 0. For such distributions, the useful analog is the probability
density function (PDF). The integral of the PDF is the probability over the interval; if the
continuous random variable X has PDF f, then

� � � �Prob
b

a
a X b f x dx� � � �

The relationship between the CDF and the PDF is

� � � �
x

F x f t dt
��

� �

as shown below.

188 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Figure 11-2 Probability Density Function

The “DF” routines for continuous distributions in this chapter evaluate cumulative distribution
functions, just as the ones for discrete distributions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the
support of the distribution. The “IN” routines in this chapter compute the inverses of the
distribution functions; that is, given F(x) (called “P” for “probability”), a routine like BETIN (page
212) computes x. The inverses are defined only over the open interval (0, 1).

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 189

Figure 11-3 Cumulative Probability Distribution Function

There are two routines in this chapter that deal with general continuous distribution functions. The
routine GCDF (page 233) computes a distribution function using values of the density function, and
the routine GCIN (page 236) computes the inverse. These two routines may be useful when the
user has an estimate of a probability density.

Additional Comments
Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to
an inverse function, it is often impossible to achieve good accuracy because of the nature of the
representation of numeric values. In this case, it may be better to work with the complementary
distribution function (one minus the distribution function). If the distribution is symmetric about
some point (as the normal distribution, for example) or is reflective about some point (as the beta
distribution, for example), the complementary distribution function has a simple relationship with
the distribution function. For example, to evaluate the standard normal distribution at 4.0, using
ANORIN (page 208) directly, the result to six places is 0.999968. Only two of those digits are really
useful, however. A more useful result may be 1.000000 minus this value, which can be obtained to
six significant figures as 3.16713E�05 by evaluating ANORIN at �4.0. For the normal distribution,
the two values are related by �(x) = 1 � �(�x), where �(�) is the normal distribution function.
Another example is the beta distribution with parameters 2 and 10. This distribution is skewed to
the right; so evaluating BETDF at 0.7, we obtain 0.999953. A more precise result is obtained by
evaluating BETDF with parameters 10 and 2 at 0.3. This yields 4.72392E�5. (In both of these
examples, it is wise not to trust the last digit.)

190 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun
(1964). The algorithms make use of various expansions and recursive relationships, and often use
different methods in different regions.

Cumulative distribution functions are defined for all real arguments; however, if the input to one
of the distribution functions in this chapter is outside the range of the random variable, an error of
Type 1 is issued, and the output is set to zero or one, as appropriate. A Type 1 error is of lowest
severity, a “note;” and, by default, no printing or stopping of the program occurs. The other
common errors that occur in the routines of this chapter are Type 2, “alert,” for a function value
being set to zero due to underflow; Type 3, “warning,” for considerable loss of accuracy in the
result returned; and Type 5, “terminal,” for incorrect and/ or inconsistent input, complete loss of
accuracy in the result returned, or inability to represent the result (because of overflow). When a
Type 5 error occurs, the result is set to NaN (not a number, also used as a missing value code,
obtained by IMSL routine AMACH(6). (See the section “User Errors” in the Reference Material.)

BINDF
This function evaluates the binomial distribution function.

Function Return Value
BINDF — Function value, the probability that a binomial random variable takes a value less

than or equal to K. (Output)
BINDF is the probability that K or fewer successes occur in N independent Bernoulli
trials, each of which has a P probability of success.

Required Arguments
K — Argument for which the binomial distribution function is to be evaluated. (Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

FORTRAN 90 Interface
Generic: BINDF (K, N, P)

Specific: The specific interface names are S_BINDF and D_BINDF.

FORTRAN 77 Interface
Single: BINDF (K, N, P)

Double: The double precision function name is DBINDF.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 191

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the
probability that X is less than or equal to 3.

 USE IMSL_LIBRARIES
 INTEGER K, N, NOUT
 REAL P, PR
!
 CALL UMACH (2, NOUT)
 K = 3
 N = 5
 P = 0.95
 PR = BINDF(K,N,P)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is less than or equal to 3 is ’ &
 , F6.4)
 END

Output
The probability that X is less than or equal to 3 is 0.0226

Comments
Informational errors
Type Code

 1 3 The input argument, K, is less than zero.
 1 4 The input argument, K, is greater than the number of Bernoulli

trials, N.

Description
Function BINDF evaluates the distribution function of a binomial random variable with
parameters n and p. It does this by summing probabilities of the random variable taking on the
specific values in its range. These probabilities are computed by the recursive relationship

� �
� �

� �
� �

1
Pr Pr 1

1
n j p

X j X j
j p
� �

� � � �

�

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not
greater than n times p, and are computed backward from n, otherwise. The smallest positive
machine number, �, is used as the starting value for summing the probabilities, which are rescaled
by (1 � p)n� if forward computation is performed and by pn� if backward computation is done.

For the special case of p = 0, BINDF is set to 1; and for the case p = 1, BINDF is set to 1 if k = n
and to 0 otherwise.

BINPR
This function evaluates the binomial probability function.

192 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Function Return Value
BINPR — Function value, the probability that a binomial random variable takes a value equal

to K. (Output)

Required Arguments
K — Argument for which the binomial probability function is to be evaluated. (Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

FORTRAN 90 Interface
Generic: BINPR (K, N, P)

Specific: The specific interface names are S_BINPR and D_BINPR.

FORTRAN 77 Interface
Single: BINPR (K, N, P)

Double: The double precision function name is DBINPR.

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we find the
probability that X is equal to 3.

 USE IMSL_LIBRARIES
 INTEGER K, N, NOUT
 REAL P, PR
!
 CALL UMACH (2, NOUT)
 K = 3
 N = 5
 P = 0.95
 PR = BINPR(K,N,P)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 3 is ’, F6.4)
 END

Output
The probability that X is equal to 3 is 0.0214

Comments
Informational errors
Type Code

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 193

 1 3 The input argument, K, is less than zero.
 1 4 The input argument, K, is greater than the number of Bernoulli

trials, N.

Description
The function BINPR evaluates the probability that a binomial random variable with parameters n
and p takes on the value k. It does this by computing probabilities of the random variable taking
on the values in its range less than (or the values greater than) k. These probabilities are
computed by the recursive relationship

� �
� �

� �
� �

1
Pr Pr 1

1
n j p

X j X j
j p
� �

� � � �

�

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not
greater than n times p, and are computed backward from n, otherwise. The smallest positive
machine number, �, is used as the starting value for computing the probabilities, which are
rescaled by (1 � p)n� if forward computation is performed and by pn� if backward computation is
done.

For the special case of p = 0, BINPR is set to 0 if k is greater than 0 and to 1 otherwise; and for the
case p = 1, BINPR is set to 0 if k is less than n and to 1 otherwise.

Figure 11-4 Binomial Probability Function

194 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

HYPDF
This function evaluates the hypergeometric distribution function.

Function Return Value
HYPDF — Function value, the probability that a hypergeometric random variable takes a

value less than or equal to K. (Output)
HYPDF is the probability that K or fewer defectives occur in a sample of size N drawn
from a lot of size L that contains M defectives.
See Comment 1.

Required Arguments
K — Argument for which the hypergeometric distribution function is to be evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPDF (K, N, M, L)

Specific: The specific interface names are S_HYPDF and D_HYPDF.

FORTRAN 77 Interface
Single: HYPDF (K, N, M, L)

Double: The double precision function name is DHYPDF.

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this
example, we evaluate the distribution function at 7.

 USE IMSL_LIBRARIES
 INTEGER K, L, M, N, NOUT
 REAL DF
!
 CALL UMACH (2, NOUT)
 K = 7
 N = 100
 L = 1000

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 195

 M = 70
 DF = HYPDF(K,N,M,L)
 WRITE (NOUT,99999) DF
99999 FORMAT (’ The probability that X is less than or equal to 7 is ’ &
 , F6.4)
 END

Output
The probability that X is less than or equal to 7 is 0.5995

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = HYPDF(K, N, M, L)
Y = SQRT(X)

must be used rather than

Y = SQRT(HYPDF(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

2. Informational errors

Type Code

 1 5 The input argument, K, is less than zero.
 1 6 The input argument, K, is greater than the sample size.

Description
The function HYPDF evaluates the distribution function of a hypergeometric random variable
with parameters n, l, and m. The hypergeometric random variable X can be thought of as the
number of items of a given type in a random sample of size n that is drawn without replacement
from a population of size l containing m items of this type. The probability function is

� � � �Pr for , 1, 2, , min ,
m l m
j n j

l
n

X j j i i i n m
�� �� �

� �� �
�� �� �

� �
� �
� �

� � � � � �

where i = max(0, n � l + m).

If k is greater than or equal to i and less than or equal to min(n, m), HYPDF sums the terms in this
expression for j going from i up to k. Otherwise, HYPDF returns 0 or 1, as appropriate. So, as to
avoid rounding in the accumulation, HYPDF performs the summation differently depending on
whether or not k is greater than the mode of the distribution, which is the greatest integer in
(m + 1)(n + 1)/(l + 2).

196 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

HYPPR
This function evaluates the hypergeometric probability function.

Function Return Value
HYPPR — Function value, the probability that a hypergeometric random variable takes a

value equal to K. (Output)
HYPPR is the probability that exactly K defectives occur in a sample of size N drawn
from a lot of size L that contains M defectives.
See Comment 1.

Required Arguments
K — Argument for which the hypergeometric probability function is to be evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPPR (K, N, M, L)

Specific: The specific interface names are S_HYPPR and D_HYPPR.

FORTRAN 77 Interface
Single: HYPPR (K, N, M, L)

Double: The double precision function name is DHYPPR.

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In this
example, we evaluate the probability function at 7.

 USE IMSL_LIBRARIES
 INTEGER K, L, M, N, NOUT
 REAL PR
!
 CALL UMACH (2, NOUT)
 K = 7
 N = 100
 L = 1000

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 197

 M = 70
 PR = HYPPR(K,N,M,L)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4)
 END

Output
The probability that X is equal to 7 is 0.1628

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = HYPPR(K, N, M, L)
Y = SQRT(X)

must be used rather than

Y = SQRT(HYPPR(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be used
without this restriction.

2. Informational errors
Type Code

1 5 The input argument, K, is less than zero.
1 6 The input argument, K, is greater than the sample size.

Description
The function HYPPR evaluates the probability function of a hypergeometric random variable
with parameters n, l, and m. The hypergeometric random variable X can be thought of as the
number of items of a given type in a random sample of size n that is drawn without replacement
from a population of size l containing m items of this type. The probability function is

� � � �Pr for , 1, 2, min ,
m l m
k n k

l
n

X k k i i i n m
�� �� �

� �� �
�� �� �

� �
� �
� �

� � � � � �

where i = max(0, n � l + m).

HYPPR evaluates the expression using log gamma functions.

POIDF
This function evaluates the Poisson distribution function.

198 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Function Return Value
POIDF — Function value, the probability that a Poisson random variable takes a value less

than or equal to K. (Output)

Required Arguments
K — Argument for which the Poisson distribution function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface
Generic: POIDF (K, THETA)

Specific: The specific interface names are S_POIDF and D_POIDF.

FORTRAN 77 Interface
Single: POIDF (K, THETA)

Double: The double precision function name is DPOIDF.

Example
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate the distribution
function at 7.

 USE IMSL_LIBRARIES
 INTEGER K, NOUT
 REAL DF, THETA
!
 CALL UMACH (2, NOUT)
 K = 7
 THETA = 10.0
 DF = POIDF(K,THETA)
 WRITE (NOUT,99999) DF
99999 FORMAT (’ The probability that X is less than or equal to ’, &
 ’7 is ’, F6.4)
 END

Output
The probability that X is less than or equal to 7 is 0.2202

Comments
Informational error
Type Code

 1 1 The input argument, K, is less than zero.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 199

Description
The function POIDF evaluates the distribution function of a Poisson random variable with
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive.
The probability function (with � = THETA) is

f(x) = e�� �x/x!, for x = 0, 1, 2, �

The individual terms are calculated from the tails of the distribution to the mode of the distribution
and summed. POIDF uses the recursive relationship

f(x + 1) = f(x)�/(x + 1), for x = 0, 1, 2, �, k � 1

with f(0) = e��.

POIPR
This function evaluates the Poisson probability function.

Function Return Value
POIPR — Function value, the probability that a Poisson random variable takes a value equal

to K. (Output)

Required Arguments
K — Argument for which the Poisson distribution function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface
Generic: POIPR(K, THETA)

Specific: The specific interface names are S_POIPR and D_POIPR.

FORTRAN 77 Interface
Single: POIPR(K, THETA)

Double: The double precision function name is DPOIPR.

Example
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate the
probability function at 7.

200 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 USE POIPR_INT
 USE UMACH_INT
 INTEGER K, NOUT
 REAL PR, THETA
!
 CALL UMACH (2, NOUT)
 K = 7
 THETA = 10.0
 PR = POIPR(K,THETA)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4)
 END

Output
The probability that X is equal to 7 is 0.0901

Comments
Informational error
Type Code

 1 1 The input argument, K, is less than zero.

Description
The function POIPR evaluates the probability function of a Poisson random variable with
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive.
The probability function (with � = THETA) is

f(k) = e���k/k!, for k = 0, 1, 2, �

POIPR evaluates this function directly, taking logarithms and using the log gamma function.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 201

Figure 11-5 Poisson Probability Function

AKS1DF
This function evaluates the distribution function of the one-sided Kolmogorov-Smirnov goodness
of fit D� or D� test statistic based on continuous data for one sample.

Function Return Value
AKS1DF — The probability of a smaller D. (Output)

Required Arguments
NOBS — The total number of observations in the sample. (Input)

D — The D� or D� test statistic. (Input)
D is the maximum positive difference of the empirical cumulative distribution function
(CDF) minus the hypothetical CDF or the maximum positive difference of the
hypothetical CDF minus the empirical CDF.

FORTRAN 90 Interface
Generic: AKS1DF(NOBS, D)

Specific: The specific interface names are S_AKS1DF and D_AKS1DF.

202 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Single: AKS1DF(NOBS, D)

Double: The double precision function name is DKS1DF.

Example
In this example, the exact one-sided probabilities for the tabled values of D+ or D�, given, for
example, in Conover (1980, page 462), are computed. Tabled values at the 10% level of
significance are used as input to AKS1DF for sample sizes of 5 to 50 in increments of 5. The last
two tabled values are obtained using the asymptotic critical values of

1.07 / NOBS

The resulting probabilities should all be close to 0.90.
 USE AKS1DF_INT
 USE UMACH_INT
 INTEGER I, NOBS, NOUT
 REAL D(10)
!
 DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, &
 0.160, 0.151/
!
 CALL UMACH (2, NOUT)
!
 DO 10 I=1, 10
 NOBS = 5*I
!
 WRITE (NOUT,99999) D(I), NOBS, AKS1DF(NOBS,D(I))
!
99999 FORMAT (’ One-sided Probability for D = ’, F8.3, ’ with NOBS ’ &
 , ’= ’, I2, ’ is ’, F8.4)
 10 CONTINUE
 END

Output
One-sided Probability for D = 0.447 with NOBS = 5 is 0.9000
One-sided Probability for D = 0.323 with NOBS = 10 is 0.9006
One-sided Probability for D = 0.266 with NOBS = 15 is 0.9002
One-sided Probability for D = 0.232 with NOBS = 20 is 0.9009
One-sided Probability for D = 0.208 with NOBS = 25 is 0.9002
One-sided Probability for D = 0.190 with NOBS = 30 is 0.8992
One-sided Probability for D = 0.177 with NOBS = 35 is 0.9011
One-sided Probability for D = 0.165 with NOBS = 40 is 0.8987
One-sided Probability for D = 0.160 with NOBS = 45 is 0.9105
One-sided Probability for D = 0.151 with NOBS = 50 is 0.9077

Comments
1. Workspace may be explicitly provided, if desired, by use of AK21DF/DK21DF. The

reference is:

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 203

AK2DF(NOBS, D, WK)

The additional argument is:

WK — Work vector of length 3 * NOBS + 3 if NOBS � 80. WK is not used if NOBS is
greater than 80.

2. Informational errors
Type Code

 1 2 Since the D test statistic is less than zero, the distribution function is
zero at D.

 1 3 Since the D test statistic is greater than one, the distribution function
is one at D.

3. If NOBS � 80, then exact one-sided probabilities are computed. In this case, on the order
of NOBS� operations are required. For NOBS > 80, approximate one-sided probabilities
are computed. These approximate probabilities require very few computations.

4. An approximate two-sided probability for the D = max (D�, D��) statistic can be
computed as twice the AKS1DF probability for D (minus one, if the probability from
AKS1DF is greater than 0.5).

Description
Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided
Kolmogorov-Smirnov one-sample D� or D� statistic when the theoretical CDF is strictly
continuous. Exact probabilities are computed according to a method given by Conover (1980,
page 350) for sample sizes of 80 or less. For sample sizes greater than 80, the asympotic
methods discussed by Conover are used.

Let F(x) denote the theoretical distribution function, and let Sn(x) denote the empirical
distribution function obtained from a sample of size NOBS. Then, the D� statistic is computed as

� � � �sup n
x

D F x S x� � �� �� �

while the one-sided D� statistic is computed as

� � � �sup n
x

D S x F x� � �� �� �

Programming Notes
Routine AKS1DF requires on the order of NOBS� operations to compute the exact probabilities,
where an operation consists of taking ten or so logarithms. Because so much computation is
occurring within each “operation,” AKS1DF is much slower than its two-sample counterpart,
IMSL function AKS2DF (page 204).

204 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

AKS2DF
This function evaluates the distribution function of the Kolmogorov-Smirnov goodness of fit D
test statistic based on continuous data for two samples.

Function Return Value
AKS2DF — The probability of a smaller D. (Output)

Required Arguments
NOBSX — The total number of observations in the first sample. (Input)

NOBSY — The total number of observations in the second sample. (Input)

D — The D test statistic. (Input)
D is the maximum absolute difference between empirical cumulative distribution
functions (CDFs) of the two samples.

FORTRAN 90 Interface
Generic: AKS2DF(NOBSX, NOBSY, D)

Specific: The specific interface names are S_AKS2DF and D_AKS2DF.

FORTRAN 77 Interface
Single: AKS2DF(NOBSX, NOBSY, D)

Double: The double precision function name is DKS2DF.

Example
Function AKS2DF is used to compute the probability of a smaller D statistic for a variety of
sample sizes using values close to the 0.95 probability value.

 USE AKS2DF_INT
 USE UMACH_INT
 INTEGER I, NOBSX(10), NOBSY(10), NOUT
 REAL D(10)
!
 DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
 DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
 DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, &
 0.18, 0.18/
!
 CALL UMACH (2, NOUT)
!
 DO 10 I=1, 10
!

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 205

 WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I), &
 AKS2DF(NOBSX(I),NOBSY(I),D(I))
!
99999 FORMAT (’ Probability for D = ’, F5.3, ’ with NOBSX = ’, I3, &
 ’ and NOBSY = ’, I3, ’ is ’, F9.6, ’.’)
 10 CONTINUE
 END

Output
Probability for D = 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
Probability for D = 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.
Probability for D = 0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
Probability for D = 0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.

Comments
1. Workspace may be explicitly provided, if desired, by use of AK22DF/DK22DF. The

reference is:

AK22DF(NOBSX, NOBSY, D, WK)

The additional argument is

WK — Work vector of length max(NOBSX, NOBSY) + 1.

2. Informational errors
Type Code

 1 2 Since the D test statistic is less than zero, then the distribution
function is zero at D.

 1 3 Since the D test statistic is greater than one, then the distribution
function is one at D.

Description
Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided
Kolmogorov-Smirnov two-sample D statistic when the theoretical CDF is strictly continuous.
Exact probabilities are computed according to a method given by Kim and Jennrich (1973).
Approximate asymptotic probabilities are computed according to methods also given in this
reference.

Let Fn(x) and Gm(x) denote the empirical distribution functions for the two samples, based on
n = NOBSX and m = NOBSY observations. Then, the D statistic is computed as

� � � �sup n m
x

D F x G x� �

206 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Programming Notes
Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute the exact
probabilities, where an operation consists of an addition and a multiplication. For
NOBSX * NOBSY less than 10000, the exact probability is computed. If this is not the case, then
the Smirnov approximation discussed by Kim and Jennrich is used if the minimum of NOBSX
and NOBSY is greater than ten percent of the maximum of NOBSX and NOBSY, or if the minimum
is greater than 80. Otherwise, the Kolmogorov approximation discussed by Kim and Jennrich is
used.

ANORDF
This function evaluates the standard normal (Gaussian) distribution function.

Function Return Value
ANORDF — Function value, the probability that a normal random variable takes a value less

than or equal to X. (Output)

Required Arguments
X — Argument for which the normal distribution function is to be evaluated. (Input)

FORTRAN 90 Interface
Generic: ANORDF (X)

Specific: The specific interface names are S_ANORDF and D_ANORDF.

FORTRAN 77 Interface
Single: ANORDF (X)

Double: The double precision function name is DNORDF.

Example
Suppose X is a normal random variable with mean 100 and variance 225. In this example, we
find the probability that X is less than 90, and the probability that X is between 105 and 110.

 USE ANORDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL P, X1, X2
!
 CALL UMACH (2, NOUT)
 X1 = (90.0-100.0)/15.0
 P = ANORDF(X1)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 90 is ’, F6.4)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 207

 X1 = (105.0-100.0)/15.0
 X2 = (110.0-100.0)/15.0
 P = ANORDF(X2) - ANORDF(X1)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 105 and 110 is ’, &
 F6.4)
 END

Output
The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

Description
Function ANORDF evaluates the distribution function, �, of a standard normal (Gaussian)
random variable, that is,

� �
2 / 21

2

x tx e dt
�

�

��

� � �

The value of the distribution function at the point x is the probability that the random variable
takes a value less than or equal to x.

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0
and variance of 1. The probability that a normal random variable with mean � and variance 	� is
less than y is given by ANORDF evaluated at (y � �)/	.

�(x) is evaluated by use of the complementary error function, erfc. (See ERFC in Chapter 5,
“Error Funtions and Related Functions” of this manual.)) The relationship is:

� � � �erfc / 2.0 / 2x x� � �

208 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Figure 11-6 Standard Normal Distribution Function

ANORIN
This function evaluates the inverse of the standard normal (Gaussian) distribution function.

Function Return Value
ANORIN — Function value. (Output)

The probability that a standard normal random variable takes a value less than or equal
to ANORIN is P.

Required Arguments
P — Probability for which the inverse of the normal distribution function is to be evaluated.

(Input)
P must be in the open interval (0.0, 1.0).

FORTRAN 90 Interface
Generic: ANORIN (P)

Specific: The specific interface names are S_ANORIN and D_ANORIN.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 209

FORTRAN 77 Interface
Single: ANORIN (P)

Double: The double precision function name is DNORIN.

Example
In this example, we compute the point such that the probability is 0.9 that a standard normal
random variable is less than or equal to this point.

 USE ANORIN_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL P, X
!
 CALL UMACH (2, NOUT)
 P = 0.9
 X = ANORIN(P)
 WRITE (NOUT,99999) X
99999 FORMAT (’ The 90th percentile of a standard normal is ’, F6.4)
 END

Output
The 90th percentile of a standard normal is 1.2816

Description
Function ANORIN evaluates the inverse of the distribution function, �, of a standard normal
(Gaussian) random variable, that is, ANORIN(P) = ���(p), where

� �
2 / 21

2

x tx e dt
�

�

��

� � �

The value of the distribution function at the point x is the probability that the random variable
takes a value less than or equal to x. The standard normal distribution has a mean of 0 and a
variance of 1.

References used to design this routine include Hart et al. (1968), Kinnucan and Kuki (1968),
and Strecok (1968).

BETDF
This function evaluates the beta probability distribution function.

Function Return Value
BETDF — Probability that a random variable from a beta distribution having parameters PIN

and QIN will be less than or equal to X. (Output)

210 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Required Arguments
X — Argument for which the beta distribution function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface
Generic: BETDF(X, PIN, QIN)

Specific: The specific interface names are S_BETDF and D_BETDF.

FORTRAN 77 Interface
Single: BETDF(X, PIN, QIN)

Double: The double precision function name is DBETDF.

Example
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric
distribution.) In this example, we find the probability that X is less than 0.6 and the probability
that X is between 0.5 and 0.6. (Since X is a symmetric beta random variable, the probability that
it is less than 0.5 is 0.5.)

 USE BETDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL P, PIN, QIN, X
!
 CALL UMACH (2, NOUT)
 PIN = 12.0
 QIN = 12.0
 X = 0.6
 P = BETDF(X,PIN,QIN)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4)
 X = 0.5
 P = P - BETDF(X,PIN,QIN)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 0.6 is ’, &
 F6.4)
 END

Output
The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 211

Comments
Informational errors
Type Code

 1 1 Since the input argument X is less than or equal to zero, the distribution
 function is equal to zero at X.

 1 2 Since the input argument X is greater than or equal to one, the distribution
 function is equal to one at X.

Description
Function BETDF evaluates the distribution function of a beta random variable with parameters
PIN and QIN. This function is sometimes called the incomplete beta ratio and, with p = PIN and
q = QIN, is denoted by Ix(p, q). It is given by

� �
� � � �

� �
� �

11

0
, 1

x qp
x

p q
I p q t t dt

p q
�

�

� �
� �

� �
�

where
(�) is the gamma function. The value of the distribution function Ix(p, q) is the
probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is denoted by
�x(p, q). The constant in the expression is the reciprocal of the beta function (the incomplete
function evaluated at one) and is denoted by �(p, q).

Function BETDF uses the method of Bosten and Battiste (1974b).

Figure 11-7 Beta Distribution Function

212 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

BETIN
This function evaluates the inverse of the beta distribution function.

Function Return Value
BETIN — Function value. (Output)

The probability that a beta random variable takes a value less than or equal to BETIN is
P.

Required Arguments
P — Probability for which the inverse of the beta distribution function is to be evaluated.

(Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface
Generic: BETIN(P, PIN, QIN)

Specific: The specific interface names are S_BETIN and D_BETIN.

FORTRAN 77 Interface
Single: BETIN(P, PIN, QIN)

Double: The double precision function name is DBETIN.

Example
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric
distribution.) In this example, we find the value x� such that the probability that X � x� is 0.9.

 USE BETIN_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL P, PIN, QIN, X
!
 CALL UMACH (2, NOUT)
 PIN = 12.0
 QIN = 12.0
 P = 0.9
 X = BETIN(P,PIN,QIN)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 213

 WRITE (NOUT,99999) X
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’)
 END

Output
X is less than 0.6299 with probability 0.9.

Comments
Informational error
Type Code

 3 1 The value for the inverse Beta distribution could not be found in 100
 iterations. The best approximation is used.

Description
The function BETIN evaluates the inverse distribution function of a beta random variable with
parameters PIN and QIN, that is, with P = P, p = PIN, and q = QIN; it determines
x (= BETIN(P, PIN, QIN)), such that

� � � �

� �
� �

11

0
 = 1

x qpp q
P t t dt

p q
�

�

� �
�

� �
�

where
(�) is the gamma function. The probability that the random variable takes a value less
than or equal to x is P.

BNRDF
This function evaluates the bivariate normal distribution function.

Function Return Value
BNRDF — Function value, the probability that a bivariate normal random variable with

correlation RHO takes a value less than or equal to X and less than or equal to Y.
(Output)

Required Arguments
X — One argument for which the bivariate normal distribution function is to be evaluated.

(Input)

Y — The other argument for which the bivariate normal distribution function is to be
evaluated. (Input)

RHO — Correlation coefficient. (Input)

FORTRAN 90 Interface
Generic: BNRDF(X, Y, RHO)

214 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Specific: The specific interface names are S_BNRDF and D_BNRDF.

FORTRAN 77 Interface
Single: BNRDF(X, Y, RHO)

Double: The double precision function name is DBNRDF.

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance
matrix

1.0 0.9
0.9 1.0

� �
� �
� �

In this example, we find the probability that X is less than �2.0 and Y is less than 0.0.
 USE BNRDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL P, RHO, X, Y
!
 CALL UMACH (2, NOUT)
 X = -2.0
 Y = 0.0
 RHO = 0.9
 P = BNRDF(X,Y,RHO)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is less than -2.0 and Y ’, &
 ’is less than 0.0 is ’, F6.4)
 END

Output
The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

Description
Function BNRDF evaluates the distribution function F of a bivariate normal distribution with
means of zero, variances of one, and correlation of RHO, that is, with � = RHO, and |�| < 1,

� �
� �

2 2

22

1 2, exp
2 12 1

x y u uv vF x y du dv�

�� �
�� ��

� �� �
� �� �
� ��� � 	

� �

To determine the probability that U � u� and V � v�, where (U, V)T is a bivariate normal random

variable with mean � = (�U, �V)T and variance-covariance matrix

2

2
U UV

UV V

� �

� �

� �
� � � �

� �

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 215

transform (U, V)T to a vector with zero means and unit variances. The input to BNRDF would be
X = (u� � �U)/	U, Y = (v� � �V) = 	V, and � = 	UV/(U	V).

Function BNRDF uses the method of Owen (1962, 1965). For |�| = 1, the distribution function is
computed based on the univariate statistic, Z = min(x, y), and on the normal distribution function
ANORDF (page 206).

See Cooper (1968) for more information on the algorithm used.

CHIDF
This function evaluates the chi-squared distribution function.

Function Return Value
CHIDF — Function value, the probability that a chi-squared random variable takes a value

less than or equal to CHSQ. (Output)

Required Arguments
CHSQ — Argument for which the chi-squared distribution function is to be evaluated.

(Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

FORTRAN 90 Interface
Generic: CHIDF(CHSQ, DF)

Specific: The specific interface names are S_CHIDF and D_CHIDF.

FORTRAN 77 Interface
Single: CHIDF(CHSQ, DF)

Double: The double precision function name is DCHIDF.

Example
Suppose X is a chi-squared random variable with 2 degrees of freedom. In this example, we find
the probability that X is less than 0.15 and the probability that X is greater than 3.0.

 USE UMACH_INT
 USE CHIDF_INT
 INTEGER NOUT
 REAL CHSQ, DF, P
!
 CALL UMACH (2, NOUT)

216 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 DF = 2.0
 CHSQ = 0.15
 P = CHIDF(CHSQ,DF)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that chi-squared with 2 df is less ’, &
 ’than 0.15 is ’, F6.4)
 CHSQ = 3.0
 P = 1.0 - CHIDF(CHSQ,DF)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that chi-squared with 2 df is greater ’, &
 ’than 3.0 is ’, F6.4)
 END

Output
The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Comments
Informational errors
Type Code

 1 1 Since the input argument, CHSQ, is less than zero, the distribution function
 is zero at CHSQ.

 2 3 The normal distribution is used for large degrees of freedom. However, it
 has produced underflow. Therefore, the probability, CHIDF, is set to zero.

Description
Function CHIDF evaluates the distribution function, F, of a chi-squared random variable with DF
degrees of freedom, that is, with = DF, and x = CHSQ,

� �
� �

/ 2 / 2 1
/ 2 0

1
2 / 2

x t vF x e t dt
�

�

� ��
� �

where
(�) is the gamma function. The value of the distribution function at the point x is the
probability that the random variable takes a value less than or equal to x.

For > 65, CHIDF uses the Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.17) to the normal distribution, and routine ANORDF (page 206) is used to evaluate
the normal distribution function.

For � 65, CHIDF uses series expansions to evaluate the distribution function. If
x < max (/2, 26), CHIDF uses the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it
uses the asymptotic expansion 6.5.32 in Abramowitz and Stegun.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 217

Figure 11-8 Chi-Squared Distribution Function

CHIIN
This function evaluates the inverse of the chi-squared distribution function.

Function Return Value
CHIIN — Function value. (Output)

The probability that a chi-squared random variable takes a value less than or equal to
CHIIN is P.

Required Arguments
P — Probability for which the inverse of the chi-squared distribution function is to be

evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

FORTRAN 90 Interface
Generic: CHIIN(P, DF)

218 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Specific: The specific interface names are S_CHIIN and D_CHIIN.

FORTRAN 77 Interface
Single: CHIIN(P, DF)

Double: The double precision function name is DCHIIN.

Example
In this example, we find the 99-th percentage points of a chi-squared random variable with 2
degrees of freedom and of one with 64 degrees of freedom.

 USE CHIIN_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL DF, P, X
!
 CALL UMACH (2, NOUT)
 P = 0.99
 DF = 2.0
 X = CHIIN(P,DF)
 WRITE (NOUT,99998) X
99998 FORMAT (’ The 99-th percentage point of chi-squared with 2 df ’ &
 , ’is ’, F7.3)
 DF = 64.0
 X = CHIIN(P,DF)
 WRITE (NOUT,99999) X
99999 FORMAT (’ The 99-th percentage point of chi-squared with 64 df ’ &
 , ’is ’, F7.3)
 END

Output
The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

Comments
Informational errors
Type Code

 4 1 Over 100 iterations have occurred without convergence. Convergence is
 assumed.

Description
Function CHIIN evaluates the inverse distribution function of a chi-squared random variable
with DF degrees of freedom; that is, with P = P and = DF, it determines x (= CHIIN(P, DF)),
such that

� �
/ 2 / 2 1

/ 2 0

1
2 / 2

x t vP e t dt
�

�

� ��
� �

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 219

where
(�) is the gamma function. The probability that the random variable takes a value less
than or equal to x is P.

For < 40, CHIIN uses bisection (if � 2 or P > 0.98) or regula falsi to find the point at which
the chi-squared distribution function is equal to P. The distribution function is evaluated using
routine CHIDF (page 215).

For 40 � < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.18) to the normal distribution is used, and routine ANORIN (page 208) is used to
evaluate the inverse of the normal distribution function. For � 100, the ordinary Wilson-
Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

CSNDF
This function evaluates the noncentral chi-squared distribution function.

Function Return Value
CSNDF — Function value, the probability that a noncentral chi-squared random variable

takes a value less than or equal to CHSQ. (Output)

Required Arguments
CHSQ — Argument for which the noncentral chi-squared distribution function is to be

evaluated. (Input)

DF — Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface
Generic: CSNDF(CHSQ, DF, ALAM)

Specific: The specific interface names are S_CSNDF and D_CSNDF.

FORTRAN 77 Interface
Single: CSNDF(CHSQ, DF, ALAM)

Double: The double precision function name is DCSNDF.

220 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Example
In this example, CSNDF is used to compute the probability that a random variable that follows
the noncentral chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of
freedom is less than or equal to 8.642.

 USE CSNDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL ALAM, CHSQ, DF, P
!
 CALL UMACH (2, NOUT)
 DF = 2.0
 ALAM = 1.0
 CHSQ = 8.642
 P = CSNDF(CHSQ,DF,ALAM)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that a noncentral chi-squared random’, &
 /, ’ variable with 2 df and noncentrality 1.0 is less’, &
 /, ’ than 8.642 is ’, F5.3)
 END

Output
The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

Comments
1. Informational errors

Type Code

 1 1 Since the input argument, CHSQ, is less than or equal to zero, the
distribution function is zero at CHSQ.

 3 2 Convergence was not obtained. The best approximation to the
probability is returned.

2. This subroutine sums terms of an infinite series of central chi-squared distribution
functions weighted by Poisson terms. Summing terminates when either the current
term is less than 10 * AMACH(4) times the current sum or when 1000 terms have been
accumulated. In the latter case, a warning error is issued.

Description
Function CSNDF evaluates the distribution function of a noncentral chi-squared random variable
with DF degrees of freedom and noncentrality parameter ALAM; that is, with = DF, � = ALAM,
and x = CHSQ,

� �
� � � �

� � � �

/ 2 2 / 2 1 / 2

2 / 20 20
2

/ 2
! 2

i i tx

ii i

e t ex dt
i

� �

� �

�
� � � �

�

�� �

�

�
� �CSNDF

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 221

where
(�) is the gamma function. This is a series of central chi-squared distribution functions
with Poisson weights. The value of the distribution function at the point x is the probability that
the random variable takes a value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function above,
or alternatively and equivalently, as the sum of squares of independent normal random
variables. If Yi have independent normal distributions with means �i and variances equal to one
and

2
1

n
ii

X Y
�

��

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality
parameter equal to

2
1

n
ii

�
�

�

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as
the chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums
forward and backward from that point, terminating when the additional terms are sufficiently
small or when a maximum of 1000 terms have been accumulated. The recurrence relation 26.4.8
of Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-squared
distribution functions.

Figure 11-9 Noncentral Chi-squared Distribution Function

222 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

FDF
This function evaluates the F distribution function.

Function Return Value
FDF — Function value, the probability that an F random variable takes a value less than or

equal to the input F. (Output)

Required Arguments
F — Argument for which the F distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface
Generic: FDF(F, DFN, DFD)

Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface
Single: FDF(F, DFN, DFD)

Double: The double precision function name is DFDF.

Example
In this example, we find the probability that an F random variable with one numerator and one
denominator degree of freedom is greater than 648.

 USE FDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL DFD, DFN, F, P
!
 CALL UMACH (2, NOUT)
 F = 648.0
 DFN = 1.0
 DFD = 1.0
 P = 1.0 - FDF(F,DFN,DFD)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that an F(1,1) variate is greater ’, &
 ’than 648 is ’, F6.4)
 END

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 223

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250

Comments
Informational error
Type Code

 1 3 Since the input argument F is not positive, the distribution function is zero
 at F.

Description
Function FDF evaluates the distribution function of a Snedecor’s F random variable with DFN
numerator degrees of freedom and DFD denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then using the routine
BETDF (page 209). If X is an F variate with � and � degrees of freedom and
Y = �X/(� + �X), then Y is a beta variate with parameters p = �/2 and q = �/2. The function
FDF also uses a relationship between F random variables that can be expressed as follows:

FDF(X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN)

Figure 11-10 F Distribution Function

FIN
This function evaluates the inverse of the F distribution function.

224 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Function Return Value
FIN — Function value. (Output)

The probability that an F random variable takes a value less than or equal to
FIN is P.

Required Arguments
P — Probability for which the inverse of the F distribution function is to be evaluated.

(Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface
Generic: FIN(P, DFN, DFD)

Specific: The specific interface names are S_FIN and D_FIN.

FORTRAN 77 Interface
Single: FIN(P, DFN, DFD)

Double: The double precision function name is DFIN.

Example
In this example, we find the 99-th percentage point for an F random variable with 1 and 7
degrees of freedom.

 USE FIN_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL DFD, DFN, F, P
!
 CALL UMACH (2, NOUT)
 P = 0.99
 DFN = 1.0
 DFD = 7.0
 F = FIN(P,DFN,DFD)
 WRITE (NOUT,99999) F
99999 FORMAT (’ The F(1,7) 0.01 critical value is ’, F6.3)
 END

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 225

Output
The F(1,7) 0.01 critical value is 12.246

Comments
Informational error
Type Code

 4 4 FIN is set to machine infinity since overflow would occur upon modifying
 the inverse value for the F distribution with the result obtained from the
 inverse BETA distribution.

Description
Function FIN evaluates the inverse distribution function of a Snedecor’s F random variable with
DFN numerator degrees of freedom and DFD denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then using the routine
BETIN (page 212). If X is an F variate with 1 and 2 degrees of freedom and
Y = �X/(� + �X), then Y is a beta variate with parameters p = �/2 and q = �/2. If P � 0.5,
FIN uses this relationship directly; otherwise, it also uses a relationship between F random
variables that can be expressed as follows, using routine FDF (page 222), which is the F
cumulative distribution function:

FDF(F, DFN, DFD) = 1.0 - FDF(1.0/F, DFD, DFN)

GAMDF
This function evaluates the gamma distribution function.

Function Return Value
GAMDF — Function value, the probability that a gamma random variable takes a value less

than or equal to X. (Output)

Required Arguments
X — Argument for which the gamma distribution function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMDF(X, A)

Specific: The specific interface names are S_GAMDF and D_GAMDF.

226 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

FORTRAN 77 Interface
Single: GAMDF(X, A)

Double: The double precision function name is DGAMDF.

Example
Suppose X is a gamma random variable with a shape parameter of 4. (In this case, it has an
Erlang distribution since the shape parameter is an integer.) In this example, we find the
probability that X is less than 0.5 and the probability that X is between 0.5 and 1.0.

 USE GAMDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL A, P, X
!
 CALL UMACH (2, NOUT)
 A = 4.0
 X = 0.5
 P = GAMDF(X,A)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 0.5 is ’, F6.4)
 X = 1.0
 P = GAMDF(X,A) - P
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 1.0 is ’, &
 F6.4)
 END

Output
The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Comments
Informational error
Type Code

 1 2 Since the input argument X is less than zero, the distribution function is set
 to zero.

Description
Function GAMDF evaluates the distribution function, F , of a gamma random variable with shape
parameter a; that is,

� �
� �

1

0

1 x t aF x e t dt
a

� �

�
�

�

where
(�) is the gamma function. (The gamma function is the integral from 0 to � of the same
integrand as above). The value of the distribution function at the point x is the probability that
the random variable takes a value less than or equal to x.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 227

The gamma distribution is often defined as a two-parameter distribution with a scale parameter
b (which must be positive), or even as a three-parameter distribution in which the third
parameter c is a location parameter. In the most general case, the probability density function
over (c, �) is

� �
� �

� � � �
1/1 at c b

af t e x c
b a

�
� �

� �
�

If T is such a random variable with parameters a, b, and c, the probability that T � t� can be
obtained from GAMDF by setting X = (t� � c)/b.

If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series expansion. Otherwise, a
continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)

Figure 11-11 Gamma Distribution Function

TDF
This function evaluates the Student’s t distribution function.

Function Return Value
TDF — Function value, the probability that a Student’s t random variable takes a value less

than or equal to the input T. (Output)

228 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Required Arguments
T — Argument for which the Student’s t distribution function is to be evaluated. (Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface
Generic: TDF(T, DF)

Specific: The specific interface names are S_TDF and D_TDF.

FORTRAN 77 Interface
Single: TDF(T, DF)

Double: The double precision function name is DTDF.

Example
In this example, we find the probability that a t random variable with 6 degrees of freedom is
greater in absolute value than 2.447. We use the fact that t is symmetric about 0.

 USE TDF_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL DF, P, T
!
 CALL UMACH (2, NOUT)
 T = 2.447
 DF = 6.0
 P = 2.0*TDF(-T,DF)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that a t(6) variate is greater ’, &
 ’than 2.447 in’, /, ’ absolute value is ’, F6.4)
 END

Output
The probability that a t(6) variate is greater than 2.447 in
absolute value is 0.0500

Description
Function TDF evaluates the distribution function of a Student’s t random variable with DF
degrees of freedom. If the square of T is greater than or equal to DF, the relationship of a t to an
F random variable (and subsequently, to a beta random variable) is exploited; and routine
BETDF (page 209) is used. Otherwise, the method described by Hill (1970) is used. If DF is not
an integer, if DF is greater than 19, or if DF is greater than 200, a Cornish-Fisher expansion is
used to evaluate the distribution function. If DF is less than 20 and ABS(T) is less than 2.0, a
trigonometric series (see Abramowitz and Stegun, 1964, equations 26.7.3 and 26.7.4, with some

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 229

rearrangement) is used. For the remaining cases, a series given by Hill (1970) that converges
well for large values of T is used.

Figure 11-12 Student’s t Distribution Function

TIN
This function evaluates the inverse of the Student’s t distribution function.

Function Return Value
TIN — Function value. (Output)

The probability that a Student’s t random variable takes a value less than or equal to
TIN is P.

Required Arguments
P — Probability for which the inverse of the Student’s t distribution function is to be

evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

230 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

FORTRAN 90 Interface
Generic: TIN(P, DF)

Specific: The specific interface names are S_TIN and D_TIN.

FORTRAN 77 Interface
Single: TIN(P, DF)

Double: The double precision function name is DTIN.

Example
In this example, we find the 0.05 critical value for a two-sided t test with 6 degrees of freedom.

 USE TIN_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL DF, P, T
!
 CALL UMACH (2, NOUT)
 P = 0.975
 DF = 6.0
 T = TIN(P,DF)
 WRITE (NOUT,99999) T
99999 FORMAT (’ The two-sided t(6) 0.05 critical value is ’, F6.3)
 END

Output
The two-sided t(6) 0.05 critical value is 2.447

Comments
Informational error
Type Code

 4 3 TIN is set to machine infinity since overflow would occur upon modifying
 the inverse value for the F distribution with the result obtained from the
 inverse � distribution.

Description
Function TIN evaluates the inverse distribution function of a Student’s t random variable with
DF degrees of freedom. Let = DF. If equals 1 or 2, the inverse can be obtained in closed
form; if is between 1 and 2, the relationship of a t to a beta random variable is exploited and
routine BETIN (page 212) is used to evaluate the inverse; otherwise the algorithm of Hill (1970)
is used. For small values of greater than 2, Hill’s algorithm inverts an integrated expansion in
1/(1 + t�/) of the t density. For larger values, an asymptotic inverse Cornish-Fisher type
expansion about normal deviates is used.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 231

TNDF
This function evaluates the noncentral Student’s t distribution function.

 Function Return Value
TNDF — Function value, the probability that a noncentral Student’s t random variable takes a

value less than or equal to T. (Output)

Required Arguments
T — Argument for which the noncentral Student’s t distribution function is to be evaluated.

(Input)

IDF — Number of degrees of freedom of the noncentral Student’s t distribution. (Input)
IDF must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface
Generic: TNDF(T, IDF, DELTA)

Specific: The specific interface names are S_TNDF and D_TNDF.

FORTRAN 77 Interface
Single: TNDF(T, IDF, DELTA)

Double: The double precision function name is DTNDF.

Example
Suppose T is a noncentral t random variable with 6 degrees of freedom and noncentrality
parameter 6. In this example, we find the probability that T is less than 12.0. (This can be
checked using the table on page 111 of Owen, 1962, with � = 0.866, which yields � = 1.664.)

 USE TNDF_INT
 USE UMACH_INT
 INTEGER IDF, NOUT
 REAL DELTA, P, T
!
 CALL UMACH (2, NOUT)
 IDF = 6
 DELTA = 6.0
 T = 12.0
 P = TNDF(T,IDF,DELTA)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that T is less than 12.0 is ’, F6.4)
 END

232 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Output
The probability that T is less than 12.0 is 0.9501

Description
Function TNDF evaluates the distribution function F of a noncentral t random variable with IDF
degrees of freedom and noncentrality parameter DELTA; that is, with = IDF, � = DELTA , and
t� = T,

� �
� �� �

� �

� �� �

2

0
/ 2 / 2

0 1 / 22

/ 22

20

/ 2

21 / 2
!

t

ii

i

eF t
x

xi dx
i x

� �

�

�

� � �

�
�

�

�

�
��

�

�

�
� �

� �� �
� � � � �� �

�� 	� 	

�

�

where
(�) is the gamma function. The value of the distribution function at the point t� is the
probability that the random variable takes a value less than or equal to t�.

The noncentral t random variable can be defined by the distribution function above, or
alternatively and equivalently, as the ratio of a normal random variable and an independent chi-
squared random variable. If w has a normal distribution with mean � and variance equal to one,
u has an independent chi-squared distribution with degrees of freedom, and

/
w
u �

then x has a noncentral t distribution with degrees of freedom and noncentrality parameter �.

The distribution function of the noncentral t can also be expressed as a double integral involving
a normal density function (see, for example, Owen, 1962, page 108). The function TNDF uses
the method of Owen (1962, 1965), which uses repeated integration by parts on that alternate
expression for the distribution function.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 233

Figure 11-13 Noncentral Student’s t Distribution Function

GCDF
This function evaluates a general continuous cumulative distribution function given ordinates of
the density.

Function Return Value
GCDF — Function value, the probability that a random variable whose density is given in F

takes a value less than or equal to X0. (Output)

Required Arguments
X0 — Point at which the distribution function is to be evaluated. (Input)

X — Array containing the abscissas or the endpoints. (Input)
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1 or 3,
X(1) contains the lower endpoint of the support of the distribution and X(2) is the upper
endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order, the abscissas such
that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates corresponding to
increasing abscissas. (Input)

234 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

If IOPT = 1 or 3; for I = 1, 2, �, M, F(I) corresponds to
X(1) + (I � 1) * (X(2) � X(1))/(M � 1); otherwise, F and X correspond one for one.

Optional Arguments
IOPT — Indicator of the method of interpolation. (Input)

Default: IOPT = 1.

IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a
curve is fitted through the ordinates (IOPT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface
Generic: GCDF (X0, X, F [,…])

Specific: The specific interface names are S_GCDF and D_GCDF.

FORTRAN 77 Interface
Single: GCDF(X0, IOPT, M, X, F)

Double: The double precision functin name is DGCDF.

Example
In this example, we evaluate the beta distribution function at the point 0.6. The probability
density function of a beta random variable with parameters p and q is

� �
� �

� � � �
� �

11 1 for 0 1qpp q
f x x x x

p q
�

�

� �
� � � �
� �

where
(�) is the gamma function. The density is equal to 0 outside the interval [0, 1]. We
compute a constant multiple (we can ignore the constant gamma functions) of the density at 300
equally spaced points and input this information in X and F. Knowing that the probability
density of this distribution is very peaked in the vicinity of 0.5, we could perhaps get a better fit
by using unequally spaced abscissas, but we will keep it simple. Note that this is the same
example as one used in the description of routine BETDF (page 209). The result from BETDF
would be expected to be more accurate than that from GCDF since BETDF is designed
specifically for this distribution.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 235

 USE GCDF_INT
 USE UMACH_INT
 INTEGER M
 PARAMETER (M=300)
!
 INTEGER I, IOPT, NOUT
 REAL F(M), H, P, PIN1, QIN1, X(2), X0, XI
!
 CALL UMACH (2, NOUT)
 X0 = 0.6
 IOPT = 3
! Initializations for a beta(12,12)
! distribution.
 PIN1 = 11.0
 QIN1 = 11.0
 XI = 0.0
 H = 1.0/(M-1.0)
 X(1) = XI
 F(1) = 0.0
 XI = XI + H
! Compute ordinates of the probability
! density function.
 DO 10 I=2, M - 1
 F(I) = XI**PIN1*(1.0-XI)**QIN1
 XI = XI + H
 10 CONTINUE
 X(2) = 1.0
 F(M) = 0.0
 P = GCDF(X0,X,F, IOPT=IOPT)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4)
 END

Output
The probability that X is less than 0.6 is 0.8364

Comments
Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF.
The reference is:

G4DF(P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCDF are:

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Description
Function GCDF evaluates a continuous distribution function, given ordinates of the probability
density function. It requires that the range of the distribution be specified in X. For distributions

236 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

with infinite ranges, endpoints must be chosen so that most of the probability content is
included. The function GCDF first fits a curve to the points given in X and F with either a
piecewise linear interpolant or a C� cubic spline interpolant based on a method by Akima
(1970). Function GCDF then determines the area, A, under the curve. (If the distribution were of
finite range and if the fit were exact, this area would be 1.0.) Using the same fitted curve, GCDF
next determines the area up to the point x� (= X0). The value returned is the area up to x� divided
by A. Because of the scaling by A, it is not assumed that the integral of the density defined by X
and F is 1.0.

For most distributions, it is likely that better approximations to the distribution function are
obtained when IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the
function. It is also likely that better approximations can be obtained when the abscissas are
chosen more densely over regions where the density and its derivatives (when they exist) are
varying greatly.

GCIN
Evaluates the inverse of a general continuous cumulative distribution function given ordinates of
the density.

Required Arguments
P — Probability for which the inverse of the distribution function is to be evaluated. (Input)

P must be in the open interval (0.0, 1.0).

X — Array containing the abscissas or the endpoints. (Input)
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1 or 3,
X(1) contains the lower endpoint of the support of the distribution and X(2) is the upper
endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order, the abscissas such
that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates corresponding to
increasing abscissas. (Input)
If IOPT = 1 or 3, for I = 1, 2, �, M, F(I) corresponds to
X(1) + (I � 1) * (X(2) � X(1))/(M � 1); otherwise, F and X correspond one for one.

GCIN — Function value. (Output)
The probability that a random variable whose density is given in F takes a value less
than or equal to GCIN is P.

Optional Arguments
IOPT — Indicator of the method of interpolation. (Input)

Default: IOPT = 1.

 IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 237

3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a
curve is fitted through the ordinates (IOPT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface
Generic: CALL GCIN (P, X, F [,…])

Specific: The specific interface names are S_GCIN and D_GCIN.

FORTRAN 77 Interface
Single: CALL GCIN(P, IOPT, M, X, F)

Double: The double precision function name is DGCIN.

Example
In this example, we find the 90-th percentage point for a beta random variable with parameters
12 and 12. The probability density function of a beta random variable with parameters p and q is

� �
� �

� � � �
� �

11 1 for 0 1qpp q
f x x x x

p q
�

�

� �
� � � �
� �

where
(�) is the gamma function. The density is equal to 0 outside the interval [0, 1]. With
p = q, this is a symmetric distribution. Knowing that the probability density of this distribution
is very peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally spaced
abscissas, but we will keep it simple and use 300 equally spaced points. Note that this is the
same example that is used in the description of routine BETIN (page 212). The result from
BETIN would be expected to be more accurate than that from GCIN since BETIN is designed
specifically for this distribution.

 USE GCIN_INT
 USE UMACH_INT
 USE BETA_INT
 INTEGER M
 PARAMETER (M=300)
!
 INTEGER I, IOPT, NOUT
 REAL C, F(M), H, P, PIN, PIN1, QIN, QIN1, &
 X(2), X0, XI
!
 CALL UMACH (2, NOUT)
 P = 0.9
 IOPT = 3
! Initializations for a beta(12,12)
! distribution.

238 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 PIN = 12.0
 QIN = 12.0
 PIN1 = PIN - 1.0
 QIN1 = QIN - 1.0
 C = 1.0/BETA(PIN,QIN)
 XI = 0.0
 H = 1.0/(M-1.0)
 X(1) = XI
 F(1) = 0.0
 XI = XI + H
! Compute ordinates of the probability
! density function.
 DO 10 I=2, M - 1
 F(I) = C*XI**PIN1*(1.0-XI)**QIN1
 XI = XI + H
 10 CONTINUE
 X(2) = 1.0
 F(M) = 0.0
 X0 = GCIN(P,X,F, IOPT=IOPT)
 WRITE (NOUT,99999) X0
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’)
 END

Output
X is less than 0.6304 with probability 0.9.

Comments
Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The reference is

G3IN(P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCIN are:

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Description
Function GCIN evaluates the inverse of a continuous distribution function, given ordinates of the
probability density function. The range of the distribution must be specified in X. For
distributions with infinite ranges, endpoints must be chosen so that most of the probability
content is included.

The function GCIN first fits a curve to the points given in X and F with either a piecewise linear
interpolant or a C� cubic spline interpolant based on a method by Akima (1970). Function GCIN
then determines the area, A, under the curve. (If the distribution were of finite range and if the fit
were exact, this area would be 1.0.) It next finds the maximum abscissa up to which the area is
less than AP and the minimum abscissa up to which the area is greater than AP. The routine then
interpolates for the point corresponding to AP. Because of the scaling by A, it is not assumed
that the integral of the density defined by X and F is 1.0.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses � 239

For most distributions, it is likely that better approximations to the distribution function are
obtained when IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the
function. It is also likely that better approximations can be obtained when the abscissas are
chosen more densely over regions where the density and its derivatives (when they exist) are
varying greatly.

240 � Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 241

Chapter 12: Mathieu Functions

Routines
Evaluate the eigenvalues
for the periodic Mathieu functions..MATEE 241
Evaluate even, periodic Mathieu functions MATCE 244
Evaluate odd, periodic Mathieu functions............................MATSE 248

Usage Notes
Mathieu’s equation is

� �
2

2 2 cos 2 0d y a q v y
dv

� � �

It arises from the solution, by separation of variables, of Laplace’s equation in elliptical
coordinates, where a is the separation constant and q is related to the ellipticity of the coordinate
system. If we let t = cos v, then Mathieu’s equation can be written as

� � � �
2

2 2
21 2 4 0d y dyt t a q qt y

dtdt
� � � � � �

For various physically important problems, the solution y(t) must be periodic. There exist, for
particular values of a, periodic solutions to Mathieu’s equation of period k� for any integer k.
These particular values of a are called eigenvalues or characteristic values. They are computed
using the routine MATEE (page 241).

There exist sequences of both even and odd periodic solutions to Mathieu’s equation. The even
solutions are computed by MATCE (page 244). The odd solutions are computed by MATSE (page
246).

MATEE
Evaluates the eigenvalues for the periodic Mathieu functions.

Required Arguments
Q — Parameter. (Input)

242 � Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

ISYM — Symmetry indicator. (Input)

 ISYM Meaning
0 Even
1 Odd

IPER — Periodicity indicator. (Input)

 ISYM Period
0 pi
1 2 * pi

EVAL — Vector of length N containing the eigenvalues. (Output)

Optional Arguments
N — Number of eigenvalues to be computed. (Input)

Default: N = size (EVAL,1)

FORTRAN 90 Interface
Generic: CALL MATEE (Q, ISYM, IPER, EVAL [,…])

Specific: The specific interface names are S_MATEE and D_MATEE.

FORTRAN 77 Interface
Single: CALL MATEE (Q, N, ISYM, IPER, EVAL)

Double: The double precision function name is DMATEE.

Example
In this example, the eigenvalues for q = 5, even symmetry, and � periodicity are computed and
printed.

 USE UMACH_INT
 USE MATEE_INT
! Declare variables
 INTEGER N
 PARAMETER (N=10)
!
 INTEGER ISYM, IPER, K, NOUT
 REAL Q, EVAL(N)
! Compute
 Q = 5.0
 ISYM = 0
 IPER = 0
 CALL MATEE (Q, ISYM, IPER, EVAL)
! Print the results
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 243

 DO 10 K=1, N
 WRITE (NOUT,99999) 2*K-2, EVAL(K)
 10 CONTINUE
99999 FORMAT (’ Eigenvalue’, I2, ’ = ’, F9.4)
 END

Output
Eigenvalue 0 = -5.8000
Eigenvalue 2 = 7.4491
Eigenvalue 4 = 17.0966
Eigenvalue 6 = 36.3609
Eigenvalue 8 = 64.1989
Eigenvalue10 = 100.1264
Eigenvalue12 = 144.0874
Eigenvalue14 = 196.0641
Eigenvalue16 = 256.0491
Eigenvalue18 = 324.0386

Comments
1. Workspace may be explicitly provided, if desired, by use of M2TEE/DM2TEE. The

reference is

CALL M2TEE (Q, N, ISYM, IPER, EVAL, NORDER, WORKD, WORKE)

The additional arguments are as follows:

NORDER — Order of the matrix whose eigenvalues are computed. (Input)

WORKD — Work vector of size NORDER. (Input/Output)
If EVAL is large enough then EVAL and WORKD can be the same vector.

WORKE — Work vector of size NORDER. (Input/Output)

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues did not converge.

Description
The eigenvalues of Mathieu’s equation are computed by a method due to Hodge (1972). The
desired eigenvalues are the same as the eigenvalues of the following symmetric, tridiagonal
matrix:

0 0

0 2 2

2 4 4

4 6

0 0
0

0
0 0

W qX
qX W qX

qX W qX
qX W

� �
� �
� �
� �
� �
� �
� �� �

�

�

�

�

� � � � �

244 � Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

Here,

� �
2

2 0
1

2 1

m

m m

mX

W m V

�� � � �
� �
��

� � � � �� 	
 �

 otherwise
if ISYM IPER

IPER IPER ISYM

where

if 1, 0 and 0
if R 1, 1 and 0

0
m

q m
V q m

� � � ��
�

� � � � ��
�
� otherwise

IPER ISYM

IPE ISYM

Since the above matrix is semi-infinite, it must be truncated before its eigenvalues can be
computed. Routine MATEE computes an estimate of the number of terms needed to get accurate
results. This estimate can be overridden by calling M2TEE with NORDER equal to the desired
order of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the IMSL
MATH/LIBRARY Chapter 2.

MATCE
Evaluates a sequence of even, periodic, integer order, real Mathieu functions.

Required Arguments
X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

CE — Vector of length N containing the values of the function through the series. (Output)
CE(I) contains the value of the Mathieu function of order I � 1 at X for I = 1 to N.

FORTRAN 90 Interface
Generic: CALL MATCE (X, Q, N, CE)

Specific: The specific interface names are S_MATCE and D_MATCE.

FORTRAN 77 Interface
Single: CALL MATCE (X, Q, N, CE)

Double: The double precision name is DMATCE.

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 245

Example 1
In this example, cen(x = �/4, q = 1), n = 0, �, 9 is computed and printed.

 USE CONST_INT
 USE MATCE_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=10)

!
 INTEGER K, NOUT
 REAL CE(N), Q, X
! Compute
 Q = 1.0
 X = CONST(’PI’)
 X = 0.25* X
 CALL MATCE (X, Q, N, CE)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, Q, CE(K)
 10 CONTINUE
99999 FORMAT (’ ce sub’, I2, ’ (’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
ce sub 0 (0.785, 1.000) = 0.654
ce sub 1 (0.785, 1.000) = 0.794
ce sub 2 (0.785, 1.000) = 0.299
ce sub 3 (0.785, 1.000) = -0.555
ce sub 4 (0.785, 1.000) = -0.989
ce sub 5 (0.785, 1.000) = -0.776
ce sub 6 (0.785, 1.000) = -0.086
ce sub 7 (0.785, 1.000) = 0.654
ce sub 8 (0.785, 1.000) = 0.998
ce sub 9 (0.785, 1.000) = 0.746

Comments
1. Workspace may be explicitly provided, if desired, by use of M2TCE/DM2TCE. The

reference is

CALL M2TCE (X, Q, N, CE, NORDER, NEEDEV, EVAL0, EVAL1, COEF,
WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following
call to M3TEE.

 CALL M3TEE(Q, N, NORDER)

246 � Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed. (Input)

EVAL0 — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with ISYM = 0 and IPER = 0. (Input/Output)
If NEEDEV is .TRUE., then EVAL0 is computed by M2TCE; otherwise, it must be
set as an input value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with ISYM = 0 and IPER = 1. (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TCE; otherwise, it must be
set as an input value.

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.

BSJ — Real work vector of length 2 * NORDER � 2.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues did not converge.

Description
The eigenvalues of Mathieu’s equation are computed using MATEE (page 241). The function
values are then computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965),
equation 8.661.

Additional Examples

Example 2
In this example, we compute cen(x, q) for various values of n and x and a fixed value of q. To
avoid having to recompute the eigenvalues, which depend on q but not on x, we compute the
eigenvalues once and pass in their value to M2TCE. The eigenvalues are computed using MATEE
(page 241). The routine M3TEE is used to compute NORDER based on Q and N. The arrays BSJ,
COEF and WORK are used as temporary storage in M2TCE.

 USE IMSL_LIBRARIES

! Declare variables
 INTEGER MAXORD, N, NX
 PARAMETER (MAXORD=100, N=4, NX=5)
!
 INTEGER ISYM, K, NORDER, NOUT
 REAL BSJ(2*MAXORD-2), CE(N), COEF(MAXORD+4)
 REAL EVAL0(MAXORD), EVAL1(MAXORD), PI, Q, WORK(MAXORD+4), X
! Compute NORDER
 Q = 1.0
 CALL M3TEE (Q, N, NORDER)

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 247

!
 CALL UMACH (2, NOUT)
 WRITE (NOUT, 99997) NORDER
! Compute eigenvalues
 ISYM = 0
 CALL MATEE (Q, ISYM, 0, EVAL0)
 CALL MATEE (Q, ISYM, 1, EVAL1)
!
 PI = CONST(’PI’)
! Compute function values
 WRITE (NOUT, 99998)
 DO 10 K=0, NX
 X = (K*PI)/NX
 CALL M2TCE(X, Q, N, CE, NORDER, .FALSE., EVAL0, EVAL1, &
 COEF, WORK, BSJ)
 WRITE (NOUT,99999) X, CE(1), CE(2), CE(3), CE(4)
 10 CONTINUE
!
99997 FORMAT (’ NORDER = ’, I3)
99998 FORMAT (/, 28X, ’Order’, /, 20X, ’0’, 7X, ’1’, 7X, &
 ’2’, 7X, ’3’)
99999 FORMAT (’ ce(’, F6.3, ’) = ’, 4F8.3)
 END

Output
NORDER = 23
 Order
 0 1 2 3
ce(0.000) = 0.385 0.856 1.086 1.067
ce(0.628) = 0.564 0.838 0.574 -0.131
ce(1.257) = 0.926 0.425 -0.575 -0.820
ce(1.885) = 0.926 -0.425 -0.575 0.820
ce(2.513) = 0.564 -0.838 0.574 0.131
ce(3.142) = 0.385 -0.856 1.086 -1.067

248 � Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

Figure 12-1 Plot of cen(x, q = 1)

MATSE
Evaluates a sequence of odd, periodic, integer order, real Mathieu functions.

Required Arguments
X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

SE — Vector of length N containing the values of the function through the
series. (Output)
SE(I) contains the value of the Mathieu function of order I at X for I = 1 to N.

FORTRAN 90 Interface
Generic: CALL MATSE (X, Q, N, SE)

Specific: The specific interface names are S_MATSE and D_MATSE.

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 249

FORTRAN 77 Interface
Single: CALL MATSE (X, Q, N, SE)

Double: The double precision function name is DMATSE.

Example
In this example, sen(x = �/4, q = 10), n = 0, �, 9 is computed and printed.

Figure 12-2 Plot of sen(x, q = 1)

 USE CONST_INT
 USE MATSE_INT
 USE UMACH_INT
! Declare variables
 INTEGER N
 PARAMETER (N=10)
!
 INTEGER K, NOUT
 REAL SE(N), Q, X
! Compute
 Q = 10.0
 X = CONST(’PI’)
 X = 0.25* X
 CALL MATSE (X, Q, N, SE)
! Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, Q, SE(K)

250 � Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

 10 CONTINUE
99999 FORMAT (’ se sub’, I2, ’ (’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
se sub 0 (0.785,10.000) = 0.250
se sub 1 (0.785,10.000) = 0.692
se sub 2 (0.785,10.000) = 1.082
se sub 3 (0.785,10.000) = 0.960
se sub 4 (0.785,10.000) = 0.230
se sub 5 (0.785,10.000) = -0.634
se sub 6 (0.785,10.000) = -0.981
se sub 7 (0.785,10.000) = -0.588
se sub 8 (0.785,10.000) = 0.219
se sub 9 (0.785,10.000) = 0.871

Comments
1. Workspace may be explicitly provided, if desired, by use of M2TSE/DM2TSE. The

reference is

CALL M2TSE (X, Q, N, SE, NORDER, NEEDEV, EVAL0,
EVAL1, COEF, WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following
call to M3TEE.

 CALL M3TEE (Q, N, NORDER)

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed. (Input)

EVAL0 — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with ISYM = 1 and IPER = 0. (Input/Output)
If NEEDEV is .TRUE., then EVAL0 is computed by M2TSE; otherwise, it must be
set as an input value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed
by MATEE with ISYM = 1 and IPER = 1. (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TSE; otherwise, it must be
set as an input value.

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.

BSI — Real work vector of length 2 * NORDER + 1.

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions � 251

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues did not converge.

Description
The eigenvalues of Mathieu’s equation are computed using MATEE (page 241). The function
values are then computed using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965),
equation 8.661.

252 � Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Chapter 13: Miscellaneous Functions � 253

Chapter 13: Miscellaneous
Functions

Routines
Spence dilogarithm ..SPENC 255
Initialize a Chebyshev series ..INITS 256
Evaluate a Chebyshev series .. CSEVL 257

Usage Notes
Many functions of one variable can be numerically computed using a Chebyshev series,

� � � �0
1 1n nn

f x A T x x�

�

� � � ��

A Chebyshev series is better for numerical computation than a Taylor series since the Chebyshev
polynomials, Tn(x), are better behaved than the monomials, xn.

A Taylor series can be converted into a Chebyshev series using an algorithm of Fields and Wimp,
(see Luke (1969), page 292).

Let

� � 0
n

nn
f x x�

�

�

��

be a Taylor series expansion valid for |x| < 1. Define

� � � �

� �

1
2

0

12
2 1 !4

n kkk
n n k

k

n n
A

n k
�

� �

�

� �

�

�
�

where (a)k =
(a + k)/
(a) is Pochhammer’s symbol.

254 � Chapter 13: Miscellaneous Functions IMSL MATH/LIBRARY Special Functions

(Note that (a)k���� = (a + k)(a)k). Then,

� � � � � �* *1
02 1

0 1n nn
f x T x A T x x�

�

� � � ��

where

� �*
nT x

are the shifted Chebyshev polynomials,

� � � �* * 2 1n nT x T x� �

In an actual implementation of this algorithm, the number of terms in the Taylor series and the
number of terms in the Chebyshev series must both be finite. If the Taylor series is an alternating
series, then the error in using only the first M terms is less than |�M � � |. The error in truncating the
Chebyshev series to N terms is no more than

1 nn N
c�

� �
�

If the Taylor series is valid on |x| < R, then we can write

� � � �0
/ nn

nn
f x R x R�

�

�

��

and use �nRn instead of �n in the algorithm to obtain a Chebyshev series in x/R valid for 0 < x < R.
Unfortunately, if R is large, then the Chebyshev series converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at c. Let t = x � c, so

� � � � � �

� �

0 0 0

0 0
ˆ ˆ

nn n j j
n nn n j

nn
n nn n

n
f x f t c t c c t

j

t x c

� �

� �

� �
�

� � �

� �

� �

� �
� � � � � � �

� �

� � 	

� � �

� �

By interchanging the order of the double sum, it can easily be shown that

ˆ n j
j nn j

n
c

j
� �

�
�

�

� �
� � �

� �
�

By combining scaling and shifting, we can obtain a Chebyshev series valid over any interval [a, b]
for which the original Taylor series converges.

The algorithm can also be applied to asymptotic series,

� � 0
~ as n

nn
f x x x�

�
�

�

���

by treating the series truncated to M terms as a polynomial in 1/x. The asymptotic series is usually
divergent; but if it is alternating, the error in truncating the series to M terms is less than |�M �

�|/RM � � for R � x < �. Normally, as M increases, the error initially decreases to a small value and
then increases without a bound. Therefore, there is a limit to the accuracy that can be obtained by
increasing M. More accuracy can be obtained by increasing R. The optimal value of M depends on

IMSL MATH/LIBRARY Special Functions Chapter 13: Miscellaneous Functions � 255

both the sequence �j and R. For R fixed, the optimal value of M can be found by finding the value

of M at which |�M|/RM starts to increase.

Since we want a routine accurate to near machine precision, the algorithm must be implemented
using somewhat higher precision than is normally used. This is best done using a symbolic
computation package.

SPENC
This function evaluates a form of Spence’s integral.

Function Return Value
SPENC — Function value. (Output)

Required Arguments
X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: SPENC (X)

Specific: The specific interface names are S_SPENC and D_SPENC.

FORTRAN 77 Interface
Single: SPENC (X)

Double: The double precision function name is DSPENC.

Example
In this example, s(0.2) is computed and printed.

 USE SPENC_INT
 USE UMACH_INT
! Declare variables
 INTEGER NOUT
 REAL VALUE, X
! Compute
 X = 0.2
 VALUE = SPENC(X)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ SPENC(’, F6.3, ’) = ’, F6.3)
 END

256 � Chapter 13: Miscellaneous Functions IMSL MATH/LIBRARY Special Functions

Output
SPENC(0.200) = 0.211

Description
The Spence dilogarithm function, s(x), is defined to be

� �
0

ln 1x y
s x dy

y
�

� ��

For |x| � 1, the uniformly convergent expansion

� � 21

k

k

xs x
k

�

�

��

is valid.

Spence’s function can be used to evaluate much more general integral forms. For example,

� � � � � �
0

log
log

z ax b a cz d a cz d
c dx s

cx d ad bc ad bc
� � �� �

� � � �
� � �� 	

�

INITS
This function Initializes the orthogonal series so the function value is the number of terms needed
to insure the error is no larger than the requested accuracy.

Function Return Value
INITS — Number of terms needed to insure the error is no larger than ETA. (Output)

Required Arguments
OS — Vector of length NOS containing coefficients in an orthogonal series. (Input)

NOS — Number of coefficients in OS. (Input)

ETA — Requested accuracy of the series. (Input)
Contrary to the usual convention, ETA is a REAL argument to INITDS.

FORTRAN 90 Interface
Generic: INITS(OS, NOS, ETA)

Specific: The specific interface names are INITS and INITDS.

FORTRAN 77 Interface
Single: INITS(OS, NOS, ETA)

IMSL MATH/LIBRARY Special Functions Chapter 13: Miscellaneous Functions � 257

Double: The double precision function name is INITDS.

Comments
ETA will usually be chosen to be one tenth of machine precision.

Description
Function INITS initializes a Chebyshev series. The function INITS returns the number of terms
in the series s of length n needed to insure that the error of the evaluated series is everywhere
less than ETA. The number of input terms n must be greater than 1, so that a series of at least one
term and an error estimate can be obtained. In addition, ETA should be larger than the absolute
value of the last coefficient. If it is not, then all the terms of the series must be used, and no error
estimate is available.

CSEVL
This function evaluates the N-term Chebyshev series.

Function Return Value
CSEVL — Function value. (Output)

Required Arguments
X — Argument at which the series is to be evaluated. (Input)

CS — Vector of length N containing the terms of a Chebyshev series. (Input)
In evaluating CS, only half of the first coefficient is summed.

Optional Arguments
N — Number of terms in the vector CS. (Input)|

Default: N = size(CS, 1)

FORTRAN 90 Interface
Generic: CSEVL(X, CS [,…])

Specific: The specific interface names are S_CSEVL and D_CSEVL.

FORTRAN 77 Interface
Single: CSEVL(X, CS, N)

Double: The double precision function name is DCSEVL.

258 � Chapter 13: Miscellaneous Functions IMSL MATH/LIBRARY Special Functions

Comments
Informational error
Type Code

 3 7 X is outside the interval (�1.1, +1.1)

Description
Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the array s of
length n at the point x. The argument x must lie in the interval
[�1, +1]. Other finite intervals can be linearly transformed to this canonical interval. Also, the
number of terms in the series must be greater than zero but less than 1000. This latter limit is
purely arbitrary; it is imposed in order to guard against the possibility of a floating point number
being passed as an argument for n.

IMSL MATH/LIBRARY Special Functions Reference Material � 259

Reference Material

User Errors...259
Machine-Dependent Constants ... 263
Reserved Names ...263
Deprecated and Deleted Routines .. 270
Automatic Workspace Allocation ...270

User Errors
IMSL routines attempt to detect user errors and handle them in a way that provides as much in-
formation to the user as possible. To do this, we recognize various levels of severity of errors, and
we also consider the extent of the error in the context of the purpose of the routine; a trivial error
in one situation may be serious in another. IMSL routines attempt to report as many errors as they
can reasonably detect. Multiple errors present a difficult problem in error detection because input
is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of limitations of the
computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately.
In this case, the assessed degree of accuracy determines the severity of the error. In cases where
the routine computes several output quantities, if some are not computable but most are, an error
condition exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors
If the user’s input is regarded as meaningless, such as N = �1 when “N” is the number of equations,
the routine prints a message giving the value of the erroneous input argument(s) and the reason for
the erroneous input. The routine will then cause the user’s program to stop. An error in which the
user’s input is meaningless is the most severe error and is called a terminal error. Multiple
terminal error messages may be printed from a single routine.

Informational errors
In many cases, the best way to respond to an error condition is simply to correct the input and
rerun the program. In other cases, the user may want to take actions in the program itself based on
errors that occur. An error that may be used as the basis for corrective action within the program is
called an informational error. If an informational error occurs, a user-retrievable code is set. A

260 � Reference Material IMSL MATH/LIBRARY Special Functions

routine can return at most one informational error for a single reference to the routine. The codes
for the informational error codes are printed in the error messages.

Other errors
In addition to informational errors, IMSL routines issue error messages for which no user-
retrievable code is set. Multiple error messages for this kind of error may be printed. These errors,
which generally are not described in the documentation, include terminal errors as well as less
serious errors. Corrective action within the calling program is not possible for these errors.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in the MATH/LIBRARY Special Functions. Each
level has an associated PRINT attribute and a STOP attribute. These attributes have default
settings (YES or NO), but they may also be set by the user. The purpose of having multiple error
severity levels is to provide independent control of actions to be taken for errors of different
severity. Upon return from an IMSL routine, exactly one error state exists. (A code 0 “error” is no
informational error.) Even if more than one informational error occurs, only one message is
printed (if the PRINT attribute is YES). Multiple errors for which no corrective action within the
calling program is reasonable or necessary result in the printing of multiple messages (if the
PRINT attribute for their severity level is YES). Errors of any of the severity levels except level 5
may be informational errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to
provide information about the computations. Default attributes: PRINT=NO,
STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events occurring in
the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may require
corrective action by the user or calling routine. A warning error may be issued because
the results are accurate to only a few decimal places, because some of the output may
be erroneous but most of the output is correct, or because some assumptions underlying
the analysis technique are violated. Often no corrective action is necessary and the
condition can be ignored. Default attributes: PRINT=YES, STOP=NO

Level 4: Fatal. A fatal error indicates the existence of a condition that may be serious. In
most cases, the user or calling routine must take corrective action to recover. Default
attributes: PRINT=YES, STOP=YES

Level 5: Terminal. A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of equations. These
errors may also be caused by various programming errors impossible to diagnose
correctly in FORTRAN. The resulting error message may be perplexing to the user. In
such cases, the user is advised to compare carefully the actual arguments passed to the
routine with the dummy argument descriptions given in the documentation. Special
attention should be given to checking argument order and data types.

IMSL MATH/LIBRARY Special Functions Reference Material � 261

A terminal error is not an informational error because corrective action within the program is
generally not reasonable. In normal usage, execution is terminated immediately when a
terminal error occurs. Messages relating to more than one terminal error are printed if they
occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error
Handling.”

Errors in Lower-Level Routines
It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the
lower-level routine cannot pass the information up to the original user-called routine, then a
traceback of the routines is produced. The only common situation in which this can occur is when
an IMSL routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling
There are three ways in which the user may interact with the IMSL error handling system: (1) to
change the default actions, (2) to retrieve the integer code of an informational error so as to take
corrective action, and (3) to determine the severity level of an error. The routines to use are
ERSET, IERCD, and N1RTY, respectively.

ERSET
Change the default printing or stopping actions when errors of a particular error severity level
occur.

Required Arguments
IERSVR — Error severity level indicator. (Input)

If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for
errors of the specified severity level.

IPACT — Printing action. (Input)

 IPACT Action

�1 Do not change current setting(s).

 0 Do not print.

 1 Print.

 2 Restore the default setting(s).

ISACT — Stopping action. (Input)

 ISACT Action

�1 Do not change current setting(s).

262 � Reference Material IMSL MATH/LIBRARY Special Functions

 0 Do not stop.

 1 Stop.

 2 Restore the default setting(s).

FORTRAN 90 Interface
Generic: CALL ERSET (IERSVR, IPACT, ISACT)

Specific: The specific interface name is ERSET.

FORTRAN 77 Interface
Single: CALL ERSET (IERSVR, IPACT, ISACT)

IERCD and N1RTY
The last two routines for interacting with the error handling system, IERCD and N1RTY, are
INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be
used in the following way:

ICODE = IERCD()

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the
following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3
and ITYPE = 6 are both warning errors, error severity level 3. While ITYPE = 3 errors are
informational errors (IERCD() � 0), ITYPE = 6 errors are not informational errors (IERCD() = 0).

For software developers requiring additional interaction with the IMSL error handling system, see
Aird and Howell (1991).

Examples

Changes to Default Actions
Some possible changes to the default actions are illustrated below. The default actions remain in
effect for the kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3, 0, �1)

To stop if warning errors occur:
CALL ERSET (3, �1, 1)

IMSL MATH/LIBRARY Special Functions Reference Material � 263

To print all error messages:
CALL ERSET (0, 1, �1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Machine-Dependent Constants
The function subprograms in this section return machine-dependent information and can be used
to enhance portability of programs between different computers. The routines IMACH, and AMACH
describe the computer’s arithmetic. The routine UMACH describes the input, ouput, and error output
unit numbers.

IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value
IMACH(1) = Number of bits per integer storage unit.

IMACH(2) = Number of characters per integer storage unit:

Integers are represented in M-digit, base A form as

0

M k
kk

x A�
�

�

where 	 is the sign and 0 � xk < A, k = 0, �, M.

Then,

IMACH(3) = A, the base.

IMACH(4) = M, the number of base-A digits.

IMACH(5) = AM � 1, the largest integer.

The machine model assumes that floating-point numbers are represented in normalized
N-digit, base B form as

1

NE k
kk

B x B�
�

�
�

where 	 is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and E� � E � E�. Then,

264 � Reference Material IMSL MATH/LIBRARY Special Functions

min

IMACH(6) = , the base.
IMACH(7) = , the number of base- digits in single precision.
IMACH(8) = , the smallest single precision exponent.

s

s

B
N B
E

max

min

max

IMACH(9) = , the largest single precision exponent.

IMACH(10) = , the number of base- digits in double precision.
IMACH(11) = , the smallest double precision exponent.

IMACH(12) = , the

s

d

d

d

E

N B
E

E number of base- digits in double precisionB

Required Arguments
I — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: IMACH (I)

Specific: The specific interface name is IMACH.

FORTRAN 77 Interface
Single: IMACH (I)

AMACH

The function subprogram AMACH retrieves machine constants that define the computer’s single-
precision or double precision arithmetic. Such floating-point numbers are represented in
normalized N-digit, base B form as

1

NE k
kk

B x B�
�

�
�

where 	 is the sign, 0 < x� < B, 0 � xk < B, k = 2, �, N and

min maxE E E� �

Function Return Value

� �

AMACH(1)

AMACH(2)

AMACH(3)

AMACH(4)

1min , the smallest normalized positive number.

max= 1 , the largest number.

= , the smallest relative spacing.
1= , the largest relative spacing.

E
B
E NB B

NB
NB

�

�

�
�

�

�

IMSL MATH/LIBRARY Special Functions Reference Material � 265

� �AMACH(5)

AMACH(6)

AMACH(7)

AMACH(8)

 = log .10
NaN (non-signaling not a number).

=positive machine infinity.
= negative machine infinity.

B

�

See Comment 1 for a description of the use of the generic version of this function.

See Comment 2 for a description of min, max, and N.

Required Arguments
I — Index of the desired constant. (Input)

FORTRAN 90 Interface
Generic: AMACH (I)

Specific: The specific interface names are S_AMACH and D_AMACH.

FORTRAN 77 Interface
Single: AMACH (I)

Double: The double precision name is DMACH.

Comments
1. If the generic version of this function is used, the immediate result must be stored in a

variable before use in an expression. For example:

X = AMACH(I)
Y = SQRT(X)

must be used rather than

Y = SQRT(AMACH(I)).

If this is too much of a restriction on the programmer, then the specific name can be
used without this restriction..

2. Note that for single precision B = IMACH(6), N = IMACH(7).
 Emin = IMACH(8), and Emax = IMACH(9).
For double precision B = IMACH(6), N = IMACH(10).
 Emin = IMACH(11), and Emax = IMACH(12).

266 � Reference Material IMSL MATH/LIBRARY Special Functions

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a
number) as the result of various invalid or ambiguous operations, such as 0/0. The intent
is that AMACH(6) return a quiet NaN. On IEEE format computers that do not support a
quiet NaN, a special value near AMACH(2) is returned for AMACH(6). On computers that do
not have a special representation for infinity, AMACH(7) returns the same value as
AMACH(2).

DMACH

See AMACH.

IFNAN(X)
This logical function checks if the argument X is NaN (not a number).

Function Return Value
IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise,

False is returned. (Output)

Required Arguments
X – Argument for which the test for NAN is desired. (Input)

FORTRAN 90 Interface
Generic: IFNAN(X)

Specific: The specific interface names are S_IFNAN and D_IFNAN.

FORTRAN 77 Interface
Single: IFNAN (X)

Double: The double precision name is DIFNAN.

Example
 USE IFNAN_INT
 USE AMACH_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL X
!
 CALL UMACH (2, NOUT)
!
 X = AMACH(6)

IMSL MATH/LIBRARY Special Functions Reference Material � 267

 IF (IFNAN(X)) THEN
 WRITE (NOUT,*) ’ X is NaN (not a number).’
 ELSE
 WRITE (NOUT,*) ’ X = ’, X
 END IF
!
 END

Output
X is NaN (not a number).

Description
The logical function IFNAN checks if the single or double precision argument X is NAN (not a
number). The function IFNAN is provided to facilitate the transfer of programs across computer
systems. This is because the check for NaN can be tricky and not portable across computer
systems that do not adhere to the IEEE standard. For example, on computers that support the IEEE
standard for binary arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.
Thus, the check is performed as
IFNAN = X .NE. X

On other computers that do not use IEEE floating-point format, the check can be performed as:
IFNAN = X .EQ. AMACH(6)

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix,
(IEEE 1985). The above example illustrates the use of IFNAN. If X is NaN, a message is printed
instead of X. (Routine UMACH, which is described in the following section, is used to retrieve the
output unit number for printing the message.)

UMACH
Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments
N — Integer value indicating the action desired. If the value of N is negative, the input, output, or
error output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error
output unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N.
(Input)

NUNIT — The unit number that is either retrieved or set, depending on the value of input
argument N. (Input/Output)

The arguments are summarized by the following table:

N Effect
1 Retrieves input unit number in NUNIT.
2 Retrieves output unit number in NUNIT.

268 � Reference Material IMSL MATH/LIBRARY Special Functions

N Effect
3 Retrieves error output unit number in NUNIT.

�1 Sets the input unit number to NUNIT.
�2 Sets the output unit number to NUNIT.
�3 Sets the error output unit number to NUNIT.

FORTRAN 90 Interface
Generic: CALL UMACH (N, NUNIT)

Specific: The specific interface name is UMACH.

FORTRAN 77 Interface
Single: CALL UMACH (N, NUNIT)

Example
In the following example, a terminal error is issued from the MATH/LIBRARY AMACH function
since the argument is invalid. With a call to UMACH, the error message will be written to a local
file named “CHECKERR”.

 USE AMACH_INT
 USE UMACH_INT

 INTEGER N, NUNIT
 REAL X
! Set Parameter
 N = 0
!
 NUNIT = 9
 CALL UMACH (-3, NUNIT)
 OPEN (UNIT=9,FILE=’CHECKERR’)
 X = AMACH(N)
 END

Output
The output from this example, written to “CHECKERR” is:

*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8
*** inclusive. N = 0

Description
Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is
set automatically so that the default FORTRAN unit numbers for standard input, standard output,
and standard error are used. These unit numbers can be changed by inserting a call to UMACH at the
beginning of the main program that calls MATH/LIBRARY routines. If these unit numbers are

IMSL MATH/LIBRARY Special Functions Reference Material � 269

changed from the standard values, the user should insert an appropriate OPEN statement in the
calling program.

Reserved Names
When writing programs accessing IMSL MATH/LIBRARY Special Functions, the user should
choose FORTRAN names that do not conflict with names of IMSL subroutines, functions, or
named common blocks, such as the workspace common block WORKSP (page 261). The user needs
to be aware of two types of name conflicts that can arise. The first type of name conflict occurs
when a name (technically a symbolic name) is not uniquely defined within a program unit (either a
main program or a subprogram). For example, such a name conflict exists when the name BSJS is
used to refer both to a type REAL variable and to the IMSL routine BSJS in a single program unit.
Such errors are detected during compilation and are easy to correct. The second type of name
conflict, which can be more serious, occurs when names of program units and named common
blocks are not unique. For example, such a name conflict would be caused by the user defining a
routine named WORKSP and also referencing a MATH/LIBRARY Special Functions routine that
uses the named common block WORKSP. Likewise, the user must not define a subprogram with the
same name as a subprogram in MATH/LIBRARY Special Functions, that is referenced directly by
the user’s program or is referenced indirectly by other MATH/LIBRARY Special Functions
subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are described in the
User’s Manual and others that are not intended to be called by the user and, hence, that are not
documented. If the choice of names were completely random over the set of valid FORTRAN
names and if a program uses only a small subset of MATH/LIBRARY Special Functions, the
probability of name conflicts is very small. Since names are usually chosen to be mnemonic,
however, the user may wish to take some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the
routine. For example, the IMSL single precision routine for computing Bessel functions of the first
kind with real order has the name BSJS, which is the root name, and the corresponding IMSL
double precision routine has the name DBSJS. Associated with these two routines are B2JS and
DB2JS. BSJS is listed in the Alphabetical Index of Routines, but DBSJS, B2JS, and DB2JS are
not. The user of BSJS must consider both names BSJS and B2JS to be reserved; likewise, the user
of DBSJS must consider both names DBSJS and DB2JS to be reserved. The root names of all
routines and named common blocks that are used by MATH/LIBRARY Special Functions and
that do not have a numeral in the second position of the root name are listed in the Alphabetical
Index of Routines. Some of the routines in this Index are not intended to be called by the user and
so are not documented. The careful user can avoid any conflicts with IMSL names if the following
rules are observed:

� Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s
Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.

� Do not choose a name of three or more characters with a numeral in the second or third
position.

These simplified rules include many combinations that are, in fact, allowable. However, if the
user selects names that conform to these rules, no conflict will be encountered.

270 � Reference Material IMSL MATH/LIBRARY Special Functions

Deprecated Features and Deleted Routines
Automatic Workspace Allocation
FORTRAN subroutines that work with arrays as input and output often require extra arrays for use
as workspace while doing computations or moving around data. IMSL routines generally do not
require the user explicitly to allocate such arrays for use as workspace. On most systems the
workspace allocation is handled transparently. The only limitation is the actual amount of memory
available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in
a named common block WORKSP. A very similar use of a workspace stack is described by Fox et
al. (1978, pages 116�121). (For compatiblity with older versions of the IMSL Libraries, space is
allocated from the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL
routine LSARG (in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs
arrays for workspace. LSARG allocates arrays from the common area, and passes them to the
lower-level routine L2ARG which does the computations. In the “Comments” section of the
documentation for LSARG, the amount of workspace is noted and the call to L2ARG is described.
This scheme for using lower-level routines is followed throughout the IMSL Libraries. The names
of these routines have a “2” in the second position (or in the third position in double precision
routines having a “D” prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few cases, the 2-level
routine allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates
that space so that it becomes available for use in other routines.

Changing the Amount of Space Allocated
This section is relevant only to those systems on which the transparent workspace allocator is not
available.

By default, the total amount of space allocated in the common area for storage of numeric data is
5000 numeric storage units. (A numeric storage unit is the amount of space required to store an
integer or a real number. By comparison, a double precision unit is twice this amount. Therefore,
the total amount of space allocated in the common area for storage of numeric data is 2500 double
precision units.) This space is allocated as needed for INTEGER, REAL, or other numeric data. For
larger problems in which the default amount of workspace is insufficient, the user can change the
allocation by supplying the FORTRAN statements to define the array in the named common block
and by informing the IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are

COMMON /WORKSP/ RWKSP
REAL RWKSP(7000)
CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount available in the com-
mon stack, the routine issues a fatal error message that indicates how much space is needed and
prints statements like those above to guide the user in allocating the necessary amount. The

IMSL MATH/LIBRARY Special Functions Reference Material � 271

program below uses IMSL routine BSJS (See Chapter 6, “Bessel Funtions ” of this manual.) to
illustrate this feature.

This routine requires workspace that is just larger than twice the number of function values
requested.

 INTEGER N
 REAL BS(10000), X, XNU
 EXTERNAL BSJS
! Set Parameters
 XNU = .5
 X = 1.
 N = 6000
 CALL BSJS (XNU, X, N, BS)
 END

Output
*** TERMINAL ERROR from BSJS. Insufficient workspace for
*** current allocation(s). Correct by calling
*** IWKIN from main program with the three
*** following statements: (REGARDLESS OF
*** PRECISION)
*** COMMON /WORKSP/ RWKSP
*** REAL RWKSP(12018)
*** CALL IWKIN(12018)

*** TERMINAL ERROR from BSJS. The workspace requirement is
*** based on N =6000.
STOP

In most cases, the amount of workspace is dependent on the parameters of the problem so the
amount needed is known exactly. In a few cases, however, the amount of workspace is dependent
on the data (for example, if it is necessary to count all of the unique values in a vector). Thus, the
IMSL routine cannot tell in advance exactly how much workspace is needed. In such cases, the
error message printed is an estimate of the amount of space required.

Character Workspace
Since character arrays cannot be equivalenced with numeric arrays, a separate named common
block WKSPCH is provided for character workspace. In most respects, this stack is managed in the
same way as the numeric stack. The default size of the character workspace is 2000 character
units. (A character unit is the amount of space required to store one character.) The routine
analogous to IWKIN used to change the default allocation is IWKCIN.

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY
Special Functions. A deprecated routine is one that is no longer used by anything in the library but
is being included in the product for those users who may be currently referencing it in their
application. However, any future versions of MATH/LIBRARY Special Functions will not
include these routines. If any of these routines are being called within an application, it is
recommended that you change your code or retain the deprecated routine before replacing this
library with the next version. Most of these routines were called by users only when they needed
to set up their own workspace. Thus, the impact of these changes should be limited.

272 � Reference Material IMSL MATH/LIBRARY Special Functions

G2DF
G2IN
G3DF

The following specific FORTRAN intrinsic functions are no longer supplied by IMSL. They can
all be found in their manufacturer’s FORTRAN runtime libraries. If any change must be made to
the user’s application as a result of their removal from the IMSL Libraries, it is limited to the
redeclaration of the function from “external” to “intrinsic.” Argument lists and results should be
identical.

ACOS CEXP DATAN2 DSQRT

AINT CLOG DCOS DTAN

ALOG COS DCOSH DTANH

ALOG10 COSH DEXP EXP

ASIN CSIN DINT SIN

ATAN CSQRT DLOG SINH

ATAN2 DACOS DLOG10 SQRT

CABS DASIN DSIN TAN

CCOS DATAN DSINH TANH

IMSL MATH/LIBRARY Special Functions GAMS Index � A-1

GAMS Index

Description
This index lists routines in MATH/LIBRARY Special Functions by a tree-structured classification
scheme known as GAMS. Boisvert, Howe, Kahaner, and Springmann (1990) give the GAMS
classification scheme. The classification scheme given here is Version 2.0. The first level of the
classification scheme is denoted by a letter A thru Z as follows:
A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z. Other

There are seven levels in the classification scheme. Subclasses for levels 3, 5, and 7 are denoted by
letters �a� thru �w�. Subclasses for levels 2, 4, and 6 are denoted by the numbers 1 thru 23.

The index given in the following pages lists routines in MATH/LIBRARY Special Functions
within each GAMS subclass. The purpose of the routine appear alongside the routine name.

A-2 � GAMS Index IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions
C...........ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5)

C1.........Integer-valued functions (e.g., floor, ceiling, factorial, binomial
coefficient)

BINOM Evaluates the binomial coefficient.
FAC Evaluates the factorial of the argument.

C2.........Powers, roots, reciprocals
CBRT Evaluates the real or complex cube root.

C3.........Polynomials

C3aOrthogonal
INITS Initializes the orthogonal series so the function value is the

number of terms needed to insure the error is no larger
than the requested accuracy.

C3a2Chebyshev, Legendre
CSEVL Evaluates the N-term Chebyshev series.

C4.........Elementary transcendental functions
CACOS Evaluates the complex arc cosine.
CARG Evaluates the argument of a complex number.
CASIN Evaluates the complex arc sine.
CATAN Evaluates the complex arc tangent.
CATAN2 Evaluates the complex arc tangent of a ratio.
COSDG Evaluates the cosine for the argument in degrees.
COT Evaluates the real or complex cotangent.
SINDG Evaluates the sine for the argument in degrees.

C4b.......Exponential, logarithmic
ALNREL Evaluates the natural logarithm of one plus the argument.
CLNREL Evaluates the principal value of the complex natural

logarithm of one plus the argument.
EXPRL Evaluates the real or complex exponential function

factored from first order.
LOG10 Evaluates the principal value of the real or complex

common logarithm.

C4cHyperbolic, inverse hyperbolic
ACOSH Evaluates the real or complex arc hyperbolic cosine.
ASINH Evaluates the real or complex arc hyperbolic sine.
ATANH Evaluates the arc hyperbolic tangent..
CSINH Evaluates the complex hyperbolic sine.
CTANH Evaluates the complex hyperbolic tangent.
TAN Evaluates the real or complex tangent.

C5.........Exponential and logarithmic integrals
ALI Evaluates the logarithmic integral.

IMSL MATH/LIBRARY Special Functions GAMS Index � A-3

CHI Evaluates the hyperbolic cosine integral.
CI Evaluates the cosine integral.
CIN Evaluates a function closely related to the cosine integral.
CINH Evaluates a function closely related to the hyperbolic

cosine integral.
E1 Evaluates the exponential integral for arguments greater

than zero and the Cauchy principal value of the integral for
arguments less than zero.

EI Evaluates the exponential integral for arguments greater
than zero and the Cauchy principal value for arguments
less than zero.

ENE Evaluates the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

SHI Evaluates the hyperbolic sine integral.
SI Evaluates the sine integral.

C7.........Gamma

C7aGamma, log gamma, reciprocal gamma
ALGAMS Returns the logarithm of the absolute value of the gamma

function and the sign of gamma.
ALNGAM Evaluates the real or complex natural logarithm of the

absolute value of the gamma function.
GAMMA Evaluates the real or complex gamma function.
GAMR Evaluates the reciprocal real or complex gamma function.
POCH Evaluates a generalization of Pochhammer�s symbol.
POCH1 Evaluates a generalization of Pochhammer�s symbol

starting from the first order.

C7b.......Beta, log beta
ALBETA Evaluate the log of the real or complex beta function,

ln �(a,b).
BETA Evaluates the real or complex beta function.

C7cPsi function
PSI Evaluates the logarithmic derivative of the gamma

function for a real or complex argument.

C7e Incomplete gamma
CHIDF Evaluates the chi-squared distribution function.
CHIIN Evaluates the inverse of the chi-squared distribution

function.
GAMDF Evaluates the gamma distribution function.
GAMI Evaluates the incomplete gamma function.
GAMIC Evaluates the complementary incomplete gamma function.
GAMIT Evaluates the Tricomi form of the incomplete gamma

function.

C7f Incomplete beta
BETAI Evaluates the incomplete beta function ratio.
BETDF Evaluates the beta probability distribution function.

A-4 � GAMS Index IMSL MATH/LIBRARY Special Functions

BETIN Evaluates the inverse of the beta distribution function.

C8.........Error functions

C8aError functions, their inverses, integrals, including the normal
distribution function

ANORDF Evaluates the standard normal (Gaussian) distribution
function.

ANORIN Evaluates the inverse of the standard normal (Gaussian)
distribution function.

CERFE Evaluates the complex scaled complemented error
function.

ERF Evaluates the error function.
ERFC Evaluates the complementary error function.
ERFCE Evaluates the exponentially scaled complementary error

function.
ERFCI Evaluates the inverse complementary error function.
ERFI Evaluates the inverse error function.

C8b.......Fresnel integrals
FRESC Evaluates the cosine Fresnel integral.
FRESS Evaluates the sine Fresnel integral.

C8cDawson�s integral
DAWS Evaluates Dawson function.

C10.......Bessel functions

C10aJ, Y, H���; H���

C10a1 ...Real argument, integer order
BSJ0 Evaluates the Bessel function of the first kind of order

zero.
BSJ1 Evaluates the Bessel function of the first kind of order one.
BSJNS Evaluates a sequence of Bessel functions of the first kind

with integer order and real or complex arguments.
BSY0 Evaluates the Bessel function of the second kind of order

zero.
BSY1 Evaluates the Bessel function of the second kind of order

one.

C10a2 ...Complex argument, integer order.
BSJNS Evaluates a sequence of Bessel functions of the first kind

with integer order and real or complex arguments.

C10a3 ...Real argument, real order
BSJS Evaluates a sequence of Bessel functions of the first kind

with real order and real positive arguments.
BSYS Evaluates a sequence of Bessel functions of the second

kind with real nonnegative order and real positive
arguments.

IMSL MATH/LIBRARY Special Functions GAMS Index � A-5

C10a4 ...Complex argument, real order
CBJS Evaluates a sequence of Bessel functions of the first kind

with real order and complex arguments.
CBYS Evaluates a sequence of Bessel functions of the second

kind with real order and complex arguments.

C10b..... I, K

C10b1...Real argument, integer order
BSI0 Evaluates the modified Bessel function of the first kind of

order zero.
BSI0E Evaluates the exponentially scaled modified Bessel

function of the first kind of order zero.
BSI1 Evaluates the modified Bessel function of the first kind of

order one.
BSI1E Evaluates the exponentially scaled modified Bessel

function of the first kind of order one.
BSINS Evaluates a sequence of modified Bessel functions of the

first kind with integer order and real or complex
arguments.

BSK0 Evaluates the modified Bessel function of the third kind of
order zero.

BSK0E Evaluates the exponentially scaled modified Bessel
function of the third kind of order zero.

BSK1 Evaluates the modified Bessel function of the third kind of
order one.

BSK1E Evaluates the exponentially scaled modified Bessel
function of the third kind of order one.

C10b2...Complex argument, integer order
BSINS Evaluates a sequence of modified Bessel functions of the

first kind with integer order and real or complex
arguments.

C10b3...Real argument, real order
BSIES Evaluates a sequence of exponentially scaled Modified

Bessel functions of the first kind with nonnegative real
order and real positive arguments.

BSIS Evaluates a sequence of Modified Bessel functions of the
first kind with real order and real positive arguments.

BSKES Evaluates a sequence of exponentially scaled modified
Bessel functions of the third kind of fractional order.

BSKS Evaluates a sequence of modified Bessel functions of the
third kind of fractional order.

C10b4...Complex argument, real order
CBIS Evaluates a sequence of Modified Bessel functions of the

first kind with real order and complex arguments.
CBKS Evaluates a sequence of Modified Bessel functions of the

second kind with real order and complex arguments.

A-6 � GAMS Index IMSL MATH/LIBRARY Special Functions

C10cKelvin functions
AKEI0 Evaluates the Kelvin function of the second kind, kei, of

order zero.
AKEI1 Evaluates the Kelvin function of the second kind, kei, of

order one.
AKEIP0 Evaluates the Kelvin function of the second kind, kei, of

order zero.
AKER0 Evaluates the Kelvin function of the second kind, ker, of

order zero.
AKER1 Evaluates the Kelvin function of the second kind, ker, of

order one.
AKERP0 Evaluates the derivative of the Kelvin function of the

second kind, ker, of order zero.
BEI0 Evaluates the Kelvin function of the first kind, bei, of

order zero.
BEI1 Evaluates the Kelvin function of the first kind, bei, of

order one.
BEIP0 Evaluates the derivative of the Kelvin function of the first

kind, bei, of order zero.
BER0 Evaluates the Kelvin function of the first kind, ber, of

order zero.
BER1 Evaluates the Kelvin function of the first kind, ber, of

order one.
BERP0 Evaluates the derivative of the Kelvin function of the first

kind, ber, of order zero.

C10d.....Airy and Scorer functions
AI Evaluates the Airy function.
AID Evaluates the derivative of the Airy function.
AIDE Evaluates the exponentially scaled derivative of the Airy
function.
AIE Evaluates the exponentially scaled Airy function.
BI Evaluates the Airy function of the second kind.
BID Evaluates the derivative of the Airy function of the second

kind.
BIDE Evaluates the exponentially scaled derivative of the Airy

function of the second kind.
BIE Evaluates the exponentially scaled Airy function of the

second kind.

C14.......Elliptic integrals
EJCN Evaluates the real or cmplex Jacobi elliptic function

cn(x, m).
EJDN Evaluates the real or complex Jacobi elliptic function

dn(z, m).
EJSN Evaluates the real or comple Jacobi elliptic function

sn(x, m).
ELE Evaluates the complete elliptic integral of the second kind

E(x).

IMSL MATH/LIBRARY Special Functions GAMS Index � A-7

ELK Evaluates the complete elliptic integral of the kind K(x).
ELRC Evaluates an elementary integral from which inverse

circular functions, logarithms and inverse hyperbolic
functions can be computed.

ELRD Evaluates Carlson�s incomplete elliptic integral of the
second kind RD(X, Y, Z).

ELRF Evaluates Carlson�s incomplete elliptic integral of the first
kind RF(X, Y, Z).

ELRJ Evaluates Carlson�s incomplete elliptic integral of the third
kind RJ(X, Y, Z, RHO).

C15.......Weierstrass elliptic functions
CWPL Evaluates the Weierstrass P-function in the lemniscat case

for complex argument with unit period parallelogram.
CWPLD Evaluates the first derivative of the Weierstrass P-function

in the lemniscatic case for complex argum with unit period
parallelogram.

CWPQ Evaluates the Weierstrass P-function in the
equianharmonic case for complex argument with unit
period parallelogram.

CWPQD Evaluates the first derivative of the Weierstrass P-function
in the equianharmonic case for complex argument with
unit period parallelogram.

C17.......Mathieu functions
MATCE Evaluates a sequence of even, periodic, integer order, real

Mathieu functions.
MATEE Evaluates the eigenvalues for the periodic Mathieu

functions.
MATSE Evaluates a sequence of odd, periodic, integer order, real

Mathieu functions.

C19.......Other special functions
SPENC Evaluates a form of Spence�s integral.

LSTATISTICS, PROBABILITY

L5Function evaluation (search also class C)

L5aUnivariate

L5a1Cumulative distribution functions, probability density functions
GCDF Evaluates a general continuous cumulative distribution

function given ordinates of the density.

L5a1b ...Beta, binomial
BETDF Evaluates the beta probability distribution function.
BINDF Evaluates the binomial distribution function.
BINPR Evaluates the binomial probability function.

L5a1c ...Cauchy, chi-squared
CHIDF Evaluates the chi-squared distribution function.
CSNDF Evaluates the noncentral chi-squared distribution function.

A-8 � GAMS Index IMSL MATH/LIBRARY Special Functions

L5a1fF distribution
FDF Evaluates the F distribution function.

L5a1g ...Gamma, general, geometric
GAMDF Evaluates the gamma distribution function.

L5a1h ...Halfnormal, hypergeometric
HYPDF Evaluates the hypergeometric distribution function.
HYPPR Evaluates the hypergeometric probability function.

L5a1k ...Kendall F statistic, Kolmogorov-Smirnov
AKS1DF Evaluates the distribution function of the one-sided

Kolmogorov-Smirnov goodness of fit D� or D� test
statistic based on continuous data for one sample.

AKS2DF Evaluates the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on
continuous data for two samples.

L5a1n ...Negative binomial, normal
ANORDF Evaluates the standard normal (Gaussian) distribution

function.

L5a1p ...Pareto, Poisson
POIDF Evaluates the Poisson distribution function.
POIPR Evaluates the Poisson probability function.

L5a1tt distribution
TDF Evaluates the Student�s t distribution function.
TNDF Evaluates the noncentral Student�s t distribution function.

L5a2Inverse cumulative distribution functions, sparsity functions
GCIN Evaluates the inverse of a general continuous cumulative

distribution function given ordinates of the density.

L5a2b ...Beta, binomial
BETIN Evaluates the inverse of the beta distribution function.

L5a2c....Cauchy, chi-squared
CHIIN Evaluates the inverse of the chi-squared distribution

function.

L5a2fF distribution
FIN Evaluates the inverse of the F distribution function.

L5a2n ...Negative binomial, normal, normal scores
ANORIN Evaluates the inverse of the standard normal (Gaussian)

distribution function.

L5a2tt distribution
TIN Evaluates the inverse of the Student�s t distribution

function.

L5bMultivariate

L5b1Cumulative distribution functions, probability density functions

IMSL MATH/LIBRARY Special Functions GAMS Index � A-9

L5b1n ...Normal
BNRDF Evaluates the bivariate normal distribution function.

N...........DATA HANDLING

N1......... Input, output
IFNAN Checks if a value is NaN (not a number).

N4.........Storage management (e.g., stacks, heaps, trees)
IWKCIN Initializes bookkeeping locations describing the character

workspace stack.
IWKIN Initializes bookkeeping locations describing the workspace

stack.

R...........SERVICE ROUTINES

R1.........Machine-dependent constants
AMACH Retrieves single-precision machine constants.
DMACH Retrieves double precision machine constants.
IFNAN Checks if a value is NaN (not a number).
IMACH Retrieves integer machine constants.
UMACH Sets or retrieves input or output device unit numbers.

R3.........Error handling
ERSET Sets error handler default print and stop actions.
IERCD Retrieves the integer code for an informational error.

A-10 � GAMS Index IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines � B-1

Alphabetical Summary of Routines

IMSL MATH/LIBRARY Special Functions
ACOS 17 Evaluates the complex arc cosine.

ACOSH 25 Evaluates the real or complex arc hyperbolic cosine.

AI 149 Evaluates the Airy function.

AID 152 Evaluates the derivative of the Airy function.

AIDE 157 Evaluates the exponentially scaled derivative of the Airy
function.

AIE 154 Evaluates the exponentially scaled Airy function.

AKEI0 138 Evaluates the Kelvin function of the second kind, kei, of
order zero.

AKEI1 147 Evaluates the Kelvin function of the second kind, kei, of
order one.

AKEIP0 142 Evaluates the Kelvin function of the second kind, kei, of
order zero.

AKER0 137 Evaluates the Kelvin function of the second kind, ker, of
order zero.

AKER1 146 Evaluates the Kelvin function of the second kind, ker, of
order one.

AKERP0 141 Evaluates the derivative of the Kelvin function of the
second kind, ker, of order zero.

AKS1DF 201 Evaluates the distribution function of the one-sided
Kolmogorov-Smirnov goodness of fit D� or D� test
statistic based on continuous data for one sample.

AKS2DF 204 Evaluates the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on
continuous data for two samples.

ALBETA 71 Evaluates the natural logarithm of the complete beta
function for positive arguments.

B-2 � Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

ALGAMS 57 Returns the logarithm of the absolute value of the gamma
function and the sign of gamma.

ALI 36 Evaluates the logarithmic integral.

ALNGAM 55 Evaluates the real or complex function, ln �	(x)�.

ALNREL 6 Evaluates ln(x + 1) for real or complex x.

AMACH 264 Retrieves single-precision machine constants.

ANORDF 206 Evaluates the standard normal (Gaussian) distribution
function.

ANORIN 208 Evaluates the inverse of the standard normal (Gaussian)
distribution function.

ASIN 16 Evaluates the complex arc sine.

ASINH 24 Evaluates sinh�� x for real or complex x.

ATAN 18 Evaluates the complex arc tangent.

ATAN2 19 Evaluates the complex arc tangent of a ratio.

ATANH 27 Evaluates tanh�� x for real or complex x.

BEI0 136 Evaluates the Kelvin function of the first kind, bei, of
order zero.

BEI1 145 Evaluates the Kelvin function of the first kind, bei, of
order one.

BEIP0 140 Evaluates the derivative of the Kelvin function of the first
kind, bei, of order zero.

BER0 135 Evaluates the Kelvin function of the first kind, ber, of
order zero.

BER1 144 Evaluates the Kelvin function of the first kind, ber, of
order one.

BERP0 139 Evaluates the derivative of the Kelvin function of the first
kind, ber, of order zero.

BETA 69 Evaluates the real or complex beta function, �(a,b).

BETAI 73 Evaluates the incomplete beta function ratio.

BETDF 209 Evaluates the beta probability distribution function.

BETIN 212 Evaluates the inverse of the beta distribution function.

BI 150 Evaluates the Airy function of the second kind.

BID 153 Evaluates the derivative of the Airy function of the
second kind.

BIDE 158 Evaluates the exponentially scaled derivative of the Airy
function of the second kind.

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines � B-3

BIE 155 Evaluates the exponentially scaled Airy function of the
second kind.

BINDF 190 Evaluates the binomial distribution function.

BINOM 50 Evaluates the binomial coefficient.

BINPR 191 Evaluates the binomial probability function.

BNRDF 213 Evaluates the bivariate normal distribution function.

BSI0 98 Evaluates the modified Bessel function of the first kind of
order zero.

BSI0E 104 Evaluates the exponentially scaled modified Bessel
function of the first kind of order zero.

BSI1 100 Evaluates the modified Bessel function of the first kind of
order one.

BSI1E 106 Evaluates the exponentially scaled modified Bessel
function of the first kind of order one.

BSIES 118 Evaluates a sequence of exponentially scaled modified
Bessel functions of the first kind with nonnegative real
order and real positive arguments.

BSINS 111 Evaluates a sequence of modified Bessel functions of the
first kind with integer order and real or complex
arguments.

BSIS 117 Evaluates a sequence of modified Bessel functions of the
first kind with real order and real positive arguments.

BSJ0 92 Evaluates the Bessel function of the first kind of order
zero.

BSJ1 94 Evaluates the Bessel function of the first kind of order
one.

BSJNS 109 Evaluates a sequence of Bessel functions of the first kind
with integer order and real arguments.

BSJS 113 Evaluates a sequence of Bessel functions of the first kind
with real order and real positive arguments.

BSK0 101 Evaluates the modified Bessel function of the third kind
of order zero.

BSK0E 107 Evaluates the exponentially scaled modified Bessel
function of the third kind of order zero.

BSK1 103 Evaluates the modified Bessel function of the third kind
of order one.

BSK1E 108 Evaluates the exponentially scaled modified Bessel
function of the third kind of order one.

B-4 � Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

BSKES 121 Evaluates a sequence of exponentially scaled modified
Bessel functions of the third kind of fractional order.

BSKS 120 Evaluates a sequence of modified Bessel functions of the
third kind of fractional order.

BSY0 95 Evaluates the Bessel function of the second kind of order
zero.

BSY1 97 Evaluates the Bessel function of the second kind of order
one.

BSYS 115 Evaluates a sequence of Bessel functions of the second
kind with real nonnegative order and real positive
arguments.

CARG 1 Evaluates the argument of a complex number.

CBIS 127 Evaluates a sequence of modified Bessel functions of the
first kind with real order and complex arguments.

CBJS 123 Evaluates a sequence of Bessel functions of the first kind
with real order and complex arguments.

CBKS 129 Evaluates a sequence of modified Bessel functions of the
third kind with real order and complex arguments.

CBRT 2 Evaluates the cube root of a real or complex number 3 x .

CBYS 125 Evaluates a sequence of Bessel functions of the second
kind with real order and complex arguments.

COSH 21 Evaluates the complex hyperbolic cosine.

CERFE 80 Evaluates the complex scaled complemented error
function.

CHI 43 Evaluates the hyperbolic cosine integral.

CHIDF 215 Evaluates the chi-squared distribution function.

CHIIN 217 Evaluates the inverse of the chi-squared distribution
function.

CI 39 Evaluates the cosine integral.

CIN 40 Evaluates a function closely related to the cosine integral.

CINH 44 Evaluates a function closely related to the hyperbolic
cosine integral.

COSDG 14 Evaluates the cosine for the argument in degrees.

COT 11 Evaluates cot x for real x.

CPSI 66 Evaluates the logarithmic derivative of the gamma
function for a complex argument.

CSEVL 257 Evaluates the N-term Chebyshev series.

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines � B-5

CSINH 21 Evaluates the complex hyperbolic sine.

CSNDF 219 Evaluates the noncentral chi-squared distribution
function.

CTANH 23 Evaluates the complex hyperbolic tangent.

CWPL 173 Evaluates the Weierstrass P-function in the lemniscat
case for complex argument with unit period
parallelogram.

CWPLD 175 Evaluates the first derivative of the Weierstrass
P-function in the lemniscatic case for complex argum
with unit period parallelogram.

CWPQ 176 Evaluates the Weierstrass P-function in the
equianharmonic case for complex argument with unit
period parallelogram.

CWPQD 177 Evaluates the first derivative of the Weierstrass P-
function in the equianharmonic case for complex
argument with unit period parallelogram.

DAWS 85 Evaluates Dawson function.

DMACH 266 Retrieves double precision machine constants.

E1 33 Evaluates the exponential integral for arguments greater
than zero and the Cauchy principal value of the integral
for arguments less than zero.

EI 32 Evaluates the exponential integral for arguments greater
than zero and the Cauchy principal value for arguments
less than zero.

EJCN 180 Evaluates the Jacobi elliptic function cn(x, m).

EJDN 182 This function evaluates the Jacobi elliptic function
dn(x, m).

EJSN 178 Evaluates the Jacobi elliptic function sn(x, m).

ELE 165 Evaluates the complete elliptic integral of the second kind
E(x).

ELK 163 Evaluates the complete elliptic integral of the kind K(x).

ELRC 170 Evaluates an elementary integral from which inverse
circular functions, logarithms and inverse hyperbolic
functions can be computed.

ELRD 167 Evaluates Carlson�s incomplete elliptic integral of the
second kind RD(X, Y, Z).

ELRF 166 Evaluates Carlson�s incomplete elliptic integral of the
first kind RF(X, Y, Z).

B-6 � Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

ELRJ 169 Evaluates Carlson�s incomplete elliptic integral of the
third kind RJ(X, Y, Z, RHO).

ENE 35 Evaluates the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

ERF 76 Evaluates the error function.

ERFC 77 Evaluates the complementary error function.

ERFCE 79 Evaluates the exponentially scaled complementary error
function.

ERFCI 83 Evaluates the inverse complementary error function.

ERFI 82 Evaluates the inverse error function.

ERSET 261 Set error handler default print and stop actions.

EXPRL 4 Evaluates (ex � 1)/x for real or complex x.

FAC 48 Evaluates the factorial of the argument.

FDF 222 Evaluates the F distribution function.

FIN 223 Evaluates the inverse of the F distribution function.

FRESC 86 Evaluates the cosine Fresnel integral.

FRESS 88 Evaluates the sine Fresnel integral.

GAMDF 225 Evaluates the gamma distribution function.

GAMI 59 Evaluates the incomplete gamma function.

GAMIC 61 Evaluates the complementary incomplete gamma
function.

GAMIT 63 Evaluates the Tricomi form of the incomplete gamma
function.

GAMMA 51 Evaluates the real or complex gamma function,
(x).

GAMR 54 Evaluates the reciprocal of the real or complex gamma
function, 1/
(x).

GCDF 233 Evaluates a general continuous cumulative distribution
function given ordinates of the density.

GCIN 236 Evaluates the inverse of a general continuous cumulative
distribution function given ordinates of the density.

HYPDF 194 Evaluates the hypergeometric distribution function.

HYPPR 196 Evaluates the hypergeometric probability function.

IERCD 262 Retrieves the integer code for an informational error.

IFNAN 266 Checks if a value is NaN (not a number).

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines � B-7

IMACH 263 Retrieves integer machine constants.

INITS 256 Initializes the orthogonal series so the function value is
the number of terms needed to insure the error is no
larger than the requested accuracy.

IWKCIN 271 Initializes bookkeeping locations describing the character
workspace stack.

IWKIN 270 Initializes bookkeeping locations describing the
workspace stack.

LOG10 5 Evaluate the complex base 10 logarithm, log�� z.

MATCE 244 Evaluates a sequence of even, periodic, integer order, real
Mathieu functions.

MATEE 241 Evaluates the eigenvalues for the periodic Mathieu
functions.

MATSE 248 Evaluates a sequence of odd, periodic, integer order, real
Mathieu functions.

N1RTY 262 Retrieves the error type set by the most recently called
IMSL routine.

POCH 66 Evaluates a generalization of Pochhammer�s symbol.

POCH1 67 Evaluates a generalization of Pochhammer�s symbol
starting from the first order.

POIDF 197 Evaluates the Poisson distribution function.

POIPR 199 Evaluates the Poisson probability function.

PSI 64 Evaluates the real or complex psi function, �(x).

SHI 42 Evaluates the hyperbolic sine integral.

SI 38 Evaluates the sine integral.

SINDG 13 Evaluates the sine for the argument in degrees.

SPENC 255 Evaluates a form of Spence�s integral.

TAN 10 Evaluates tan z for complex z.

TDF 227 Evaluates the Student�s t distribution function.

TIN 229 Evaluates the inverse of the Student�s t distribution
function.

TNDF 231 Evaluates the noncentral Student�s t distribution function.

UMACH 267 Set or Retrieves input or output device unit numbers.

B-8 � Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Appendix C: References � C-1

Appendix C: References

Abramowitz and Stegun
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Aird and Howell
Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local
procedures, Journal of the ACM, 17, 589�602.

Barnett
Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real
order to machine accuracy, Computer Physics Communication, 21, 297�314.

Boisvert, Howe, Kahaner, and Springmann
Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide
to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and
Technology, Gaithersburg, Maryland.

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the
management of scientific software, ACM Transactions on Mathematical Software, 11, 313�355.

Bosten and Battiste
Bosten, Nancy E., and E.L. Battiste (1974b), Incomplete beta ratio, Communications of the ACM,
17, 156�157.

Bosten, Nancy E., and E.L. Battiste (1974), Remark on algorithm 179, Communications of the
ACM, 17, 153.

Burgoyne
Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of Computation 83, 295
�298.

C-2 � Appendix C: References IMSL MATH/LIBRARY Special Functions

Carlson
Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33, 1�
16.

Carlson and Notis
Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM
Transactions on Mathematical Software, 7, 398�403.

Cody
Cody, W.J. (1969) Performance testing of function subroutines, Proceedings of the Spring Joint
Computer Conference, American Federation for Information Processing Societies Press,
Montvale, New Jersey, 759�763.

Cody, W.J. (1983), Algorithm 597: A sequence of modified Bessel functions of the first kind,
ACM Transactions on Mathematical Software, 9, 242�245.

Cody et al.
Cody, W.J., R.M. Motley, and L.W. Fullerton (1976), The computation of real fractional order
Bessel functions of the second kind, Applied Mathematics Division Technical Memorandum No.
291, Argonne National Laboratory, Argonne.

Conover
Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons, New York.

Cooper
Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied
Statistics, 17, 190�192.

Eckhardt
Eckhardt, Ulrich (1977), A rational approximation to Weierstrass� P-function. II: The Lemniscatic
case, Computing, 18, 341�349.

Eckhardt, Ulrich (1980), Algorithm 549: Weierstrass� elliptic functions, ACM Transactions on
Mathematical Software, 6, 112�120.

Fox et al.
Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM
Transactions on Mathematical Software, 4, 104�126.

Gautschi
Gautschi, Walter (1964), Bessel functions of the first kind, Communications of the ACM, 7, 187�
198.

IMSL MATH/LIBRARY Special Functions Appendix C: References � C-3

Gautschi, Walter (1969), Complex error function, Communications of the ACM, 12, 635. Gautschi,
Walter (1970), Efficient computation of the complex error function, SIAM Journal on
Mathematical Analysis, 7, 187�198.

Gautschi, Walter (1974), Algorithm 471: Exponential integrals, Collected Algorithms from
CACM, 471.

Gautschi, Walter (1979), A computational procedure for the incomplete gamma function, ACM
Transactions on Mathematical Software, 5, 466�481.

Gautschi, Walter (1979), Algorithm 542: Incomplete gamma functions, ACM Transactions on
Mathematical Software, 5, 482�489.

Gradshteyn and Ryzhik
Gradshteyn, I.S. and I.M. Ryzhik (1965), Table of Integrals, Series, and Products, (translated by
Scripta Technica, Inc.), Academic Press, New York.

Hart et al.
Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R.
Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), Computer Approximations, John
Wiley & Sons, New York.

Hill
Hill, G.W. (1970), Student�s t-distribution, Communications of the ACM, 13, 617�619.

Hodge
Hodge, D.B. (1972), The calculation of the eigenvalues and eigenvectors of Mathieu�s equation,
NASA Contractor Report, The Ohio State University, Columbus, Ohio.

C-4 � Appendix C: References IMSL MATH/LIBRARY Special Functions

IEEE
ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The
IEEE, Inc., New York.

Johnson and Kotz
Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin
Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Distributions-1, John Wiley & Sons,
New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Distributions-2, John Wiley & Sons,
New York.

Kendall and Stuart
Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics, Volume 2:
Inference and Relationship, 4th ed., Oxford University Press, New York.

Kim and Jennrich
Kim, P.J., and Jennrich, R.I. (1973), Tables of the exact sampling distribution of the two sample
Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in Mathematical Statistics,
Volume 1, (edited by H.L. Harter and D.B. Owen), American Mathematical Society, Providence,
Rhode Island.

Kinnucan and Kuki
Kinnucan, P., and H. Kuki (1968), A single precision inverse error function subroutine,
Computation Center, University of Chicago.

Luke
Luke, Y.L. (1969), The Special Function and their Approximations, Volume 1, Academic Press,
34.

NATS FUNPACK
NATS (National Activity to Test Software) FUNPACK (1976), Argonne National Laboratory,
Argonne Code Center, Argonne.

Olver and Sookne
Olver, F.W.J., and D.J. Sookne (1972), A note on the backward recurrence algorithms,
Mathematics of Computation, 26, 941�947.

Owen
Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company,
Reading, Mass.

IMSL MATH/LIBRARY Special Functions Appendix C: References � C-5

Owen, D.B. (1965), A special case of the bivariate non-central t-distribution, Biometrika, 52, 437�
446.

Pennisi
Pennisi, L.L. (1963), Elements of Complex Variables, Holt, Rinehart and Winston, New York.

Skovgaard
Skovgaard, Ove (1975), Remark on algorithm 236, ACM Transactions on Mathematical Software,
1, 282�284.

Sookne
Sookne, D.J. (1973a), Bessel functions I and J of complex argument and integer order, National
Bureau of Standards Journal of Research B, 77B, 111�114.

Sookne, D.J. (1973b), Bessel functions of real argument and integer order, National Bureau of
Standards Journal of Research B, 77A, 125�132.

Strecok
Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of
Computation, 22, 144�158.

Temme
Temme, N. M. (1975), On the numerical evaluation of the modified Bessel function of the third
kind, Journal of Computational Physics, 19, 324�337.

Thompson and Barnett
Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions I�(z) and K�(z) of real order
and complex argument, to selected accuracy, Computer Physics Communication, 47, 245�257.

C-6 � Appendix C: References IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions Product Support � i

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of the IMSL
Libraries. Visual Numerics can consult on the following topics:

 Clarity of documentation

 Possible Visual Numerics-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

 Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting and debugging of
your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing:

 support@houston.vni.com.

The following describes the procedure for consultation with Visual Numerics.

1. Include your serial (or license) number

2. Include the product name and version number: IMSL Fortran Library Version 5.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description of the
problem

IMSL MATH/LIBRARY Special Functions Index � iii

Index

A

adjoint matrix x
Airy function 149

derivative 152
exponentially scaled 154

derivative 157
second kind 150

derivative 153
exponentially scaled 155
exponentially scaled derivative

158
arguments, optional subprogram

xii

B

Bessel functions 91
first kind

integer order 109, 4
order one 94
order zero 92
real order 113, 123

modified
exponentially scaled 104, 106,

107, 108, 118, 121
first kind, integer order 111, 5, 3
first kind, nonnegative real order

118
first kind, order one 100, 106
first kind, order zero 98, 104
first kind, real order 117, 127
second kind, real order 129
third kind, fractional order 120,

121
third kind, order one 103, 108
third kind, order zero 101, 107

second kind
order one 97
order zero 95
real nonnegative order 115
real order 125

beta functions
complete 51, 69

natural logarithm 71
incomplete 73

binomial coefficient 50

C

Cauchy principal value 32, 33
character workspace 271
characteristic values 241
Chebyshev series 253, 257
complex numbers

evaluating 1
cosine

arc
hyperbolic 25

complex 17
hyperbolic 21

in degrees 14
integrals 39, 40

hyperbolic 43, 44
cotangent

evaluating 11
cube roots

evaluating 2
cumulative distribution functions

(CDF) 186

D

Dawson�s function
evaluating 85

Dawson's function 75
distribution functions 186

beta 209
inverse 212

binomial 190
bivariate normal 213
chi-squared 215

inverse 217
noncentral 219

cumulative (CDF) 186
F 222

inverse 223
gamma 225
general continuous cumulative 233

inverse 236
hypergeometric 194
Kolmogorov-Smirnov goodness of

fit 204
Poisson 197
standard normal (Gaussian) 206

inverse 208

iv � Index IMSL MATH/LIBRARY Special Functions

Student's t 227
noncentral 231

DOUBLE PRECISION types ix

E

eigenvalues 241
elementary functions viii, 1
elliptic functions 173
elliptic integrals 161

complete 163
second kind 165

first kind
Carlson's incomplete 166

second kind
Carlson's incomplete 167

third kind
Carlson's incomplete 169

Erlang distribution 226
error functions 75, 76

complementary 77
complex scaled 80
exponentially scaled 79
inverse 83

inverse 82
error handling 262
error-handling xi, xiii
errors 259, 261

alert 190, 260
fatal 260
informational 259
note 190, 260
severity level xii
terminal 190, 259, 260
warning 190, 260

exponential functions
first order 4

exponential integrals 31, 32, 33
of integer order 35

F

factorial 48
Fresnal integrals 75

cosine 86
sine 88

G

gamma distributions
standard 186

gamma functions 47
complete 51
incomplete 59

complementary 61
Tricomi form 63

logarithmic derivative 64
reciprocal 54

getting started xii

H

hyperbolic functions viii, 9

I
INTEGER types ix

J

Jacobi elliptic function 178, 180,
182, 6, 5

K

Kelvin function
first kind

order one 145
order zero 135, 136, 139, 140

second kind
order one 146, 147
order zero 137, 138, 141, 142

Kolmogorov-Smirnov goodness of
fit D-test statistic 204

L

library subprograms x
logarithmic integrals 36
logarithms

complex
common 5

for gamma functions 55, 57
natural 6, 71

M

machine-dependent constants 263
Mathieu functions 241

even 244
integer order 244, 248
odd 248
periodic 241, 244, 248
real 244, 248

matrices
adjoint x
orthogonal x

IMSL MATH/LIBRARY Special Functions Index � v

unitary x

N

naming conventions ix
NaN 190

O

optional argument xii
optional data xii
optional subprogram arguments

xii
orthogonal

matrix x
orthogonal series 256

P

Pochhammer's symbol 66, 67, 253
printing 261
printing results xiii
probability density function (PDF)

187
probability distribution functions 185

inverses 185
probability functions 186

binomial 191
hypergeometric 196
Poisson 199

R

REAL types ix
required arguments xii
reserved names 269

S

sine
arc

hyperbolic 24
complex

arc 16
hyperbolic 20

in degrees 13
integrals 38

hyperbolic 42
single precision vii
Spence's integral 255
subprograms

library x
optional arguments xii

T

tangent
arc

hyperbolic 27
complex 10

arc 18
arc of a ratio 19
hyperbolic 23

Taylor series 253
trigonometric functions viii, 9

U

underflow x
unitary matrix x
user interface vii
using library subprograms x

W

Weierstrass' function
equianharmonic case 176, 177
lemniscatic case 173, 175

workspace allocation 270

vi � Index IMSL MATH/LIBRARY Special Functions

	IMSL MATH/LIBRARY Special Functions
	Contents
	Introduction
	The IMSL Fortran Libraries
	Getting Started
	Finding the Right Routine
	Organization of the Documentation
	Naming Conventions
	Using Library Subprograms
	Programming Conventions
	Module Usage
	Programming Tips
	Optional Subprogram Arguments
	Error Handling
	Printing Results

	Chapter 1: Elementary Functions
	Routines
	Usage Notes
	CARG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CBRT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	EXPRL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description
	Additional Example
	Output

	LOG10
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ALNREL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	Chapter 2: Trigonometric and Hyperbolic Functions
	Routines
	Usage Notes
	TAN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	COT
	Function Value Return
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	SINDG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	COSDG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ASIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ACOS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ATAN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ATAN2
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	COSH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	TANH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ASINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description
	Additional Example
	Output

	ACOSH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	ATANH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output
	ATANH((0.500, 0.500)) = (0.402, 0.554)

	Chapter 3: Exponential Integrals and Related Functions
	Routines
	Usage Notes
	EI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	E1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ENE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ALI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SHI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CHI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	CINH(2.500) = 2.031
	Comments
	Description

	Chapter 4: Gamma Function and Related Functions
	Routines
	Usage Notes
	FAC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BINOM
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GAMMA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	GAMR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	ALNGAM
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	ALGAMS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GAMI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	GAMIC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GAMIT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	PSI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	POCH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	POCH1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BETA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	ALBETA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	BETAI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	BETAI(0.610, 2.200, 3.700) = 0.8822
	Description

	Chapter 5: Error Function and Related Functions
	Routines
	Usage Notes
	ERF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ERFC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ERFCE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CERFE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ERFI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	ERFCI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	DAWS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FRESC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	FRESS
	Function Value Return
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	Chapter 6: Bessel Functions
	Routines
	Usage Notes
	BSJ0
	Function Value Return
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSJ1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSY0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSY1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSK0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSK1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSI0E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSI1E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSK0E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSK1E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSJNS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description
	Additional Example
	Output

	BSINS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description
	Additional Example
	Output

	BSJS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSYS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSIS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSIES
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BSKS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSKES
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CBJS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CBYS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CBIS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CBKS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	K sub 0.300 ((1.200, 0.500)) = (0.246, -0.200)�K sub 1.300 ((1.200, 0.500)) = (0.336, -0.362)�K sub 2.300 ((1.200, 0.500)) = (0.587, -1.126)�K sub 3.300 ((1.200, 0.500)) = (0.719, -4.839)
	Comments
	Description

	Chapter 7: Kelvin Functions
	Routines
	Usage Notes
	BER0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BEI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AKER0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AKEI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BERP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BEIP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AKERP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AKEIP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BER1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BEI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AKER1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AKEI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	AKEI1(0.400) = -1.444
	Description

	Chapter 8: Airy Functions
	Routines
	AI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AID
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BID
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AIE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BIE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	AIDE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	BIDE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	Chapter 9: Elliptic Integrals
	Routines
	Usage Notes
	ELK
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ELE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ELRF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ELRD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ELRJ
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	ELRC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Chapter 10: Elliptic and Related Functions
	Routines
	Usage Notes
	CWPL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CWPLD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CWPQ
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CWPQD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	EJSN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	EJCN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	EJDN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Additional Example
	Output

	Chapter 11: Probability Distribution Functions and Inverses
	Routines
	Usage Notes
	Discrete Random Variables
	Continuous Distributions
	Additional Comments

	BINDF
	BINPR
	HYPDF
	HYPPR
	POIDF
	POIPR
	AKS1DF
	AKS2DF
	ANORDF
	ANORIN
	BETDF
	BETIN
	BNRDF
	CHIDF
	CHIIN
	CSNDF
	FDF
	FIN
	GAMDF
	TDF
	TIN
	TNDF
	GCDF
	GCIN

	Chapter 12: Mathieu Functions
	Routines
	Usage Notes
	MATEE
	MATCE
	MATSE

	Chapter 13: Miscellaneous Functions
	Routines
	Usage Notes
	SPENC
	INITS
	CSEVL

	Reference Material
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-Level Routines
	Routines for Error Handling

	ERSET
	IERCD and N1RTY
	Examples

	Machine-Dependent Constants
	IMACH
	AMACH
	DMACH
	IFNAN(X)
	UMACH
	Reserved Names
	Deprecated Features and Deleted Routines
	Automatic Workspace Allocation
	Changing the Amount of Space Allocated
	Character Workspace

	Appendix A: GAMS Index
	Description
	IMSL MATH/LIBRARY Special Functions

	Appendix B: Alphabetical Summary of Routines
	IMSL MATH/LIBRARY Special Functions

	Appendix C: References
	
	Abramowitz and Stegun
	Aird and Howell
	Akima
	Barnett
	Boisvert, Howe, Kahaner, and Springmann
	Bosten and Battiste
	Burgoyne
	Carlson
	Carlson and Notis
	Cody
	Cody et al.
	Conover
	Cooper
	Eckhardt
	Fox et al.
	Gautschi
	Gradshteyn and Ryzhik
	Hart et al.
	Hill
	Hodge
	IEEE
	Johnson and Kotz
	Kendall and Stuart
	Kim and Jennrich
	Kinnucan and Kuki
	Luke
	NATS FUNPACK
	Olver and Sookne
	Owen
	Pennisi
	Skovgaard
	Sookne
	Strecok
	Temme
	Thompson and Barnett

	Product Support
	Contacting Visual Numerics Support
	Consultation

	Index

